Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators

Authors

  • Leonid Tishchenko Petro Vasylenko Kharkiv National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001, Ukraine
  • Sergei Kharchenko Petro Vasylenko Kharkiv National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001, Ukraine https://orcid.org/0000-0002-4883-2565
  • Farida Kharchenko Kharkiv Petro Vasylenko National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001, Ukraine https://orcid.org/0000-0002-0815-4691
  • Vadym Bredykhin Kharkiv Petro Vasylenko National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001, Ukraine https://orcid.org/0000-0002-5956-5458
  • Oleg Tsurkan Vinnytsia National Agrarian University 3 Soniachna str., Vinnytsia, Ukraine, 21008, Ukraine https://orcid.org/0000-0001-6258-2083

DOI:

https://doi.org/10.15587/1729-4061.2016.65920

Keywords:

sieving process, efficiency, velocity field, holes, fluidized medium, pea mix, hydroanalogy

Abstract

The research of the process of sieving of grain mixes in vibrating sieves of grain separators is given. The generalization of theoretical research allowed obtaining a mathematical model of grain mix dynamics in vibrating sieves, which is based on hydroanalogy and improved by the introduction of bubble fluidized medium. This model is the equation for determining the grain mix velocity components, taking into account the structural and kinematic parameters of sieves and properties of the mix. This identified the possibilities of intensifying the mix sieving in vibrating sieves through the use of epicycloid-shaped holes. The model is tested on the example of the pea mix sieving, resulting in the constructed velocity field and volume efficiency variation patterns in the series round-hole sieves and the developed five-petal epicycloid-shaped hole sieves. It was found that an important parameter in the dynamic processes and the grain mix sieving process is the velocity of its passage through the holes. To increase the modeling accuracy, the technique of identification that was to determine the flow rate of granular medium through the sieve holes was developed. The measurements of the velocity of the mix passage through the sieve holes were carried out. To do this, the flow of the sieved grain mix was determined and attributed to the area of the sieve holes. The load, structural and kinematic parameters of the sieve, including the type of holes was varied. The studies found a significant increase in the velocity of passage of the grain mix through epicycloid-shaped holes of the developed sieves in comparison with series round-hole sieves, which confirms their efficiency. Using these methods provides the real variation ranges of the velocity of passage of the grain mix of different crops through any type of sieve holes.

Author Biographies

Leonid Tishchenko, Petro Vasylenko Kharkiv National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001

Doctor of Technical Sciences, Professor, Academician of the National Academy of Agricultural Sciences of Ukraine,

Department of physics, theoretical mechanics and machine parts 

Sergei Kharchenko, Petro Vasylenko Kharkiv National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001

PhD, Associate professor

T. P. Yevsiukov department of optimization of technological systems

Farida Kharchenko, Kharkiv Petro Vasylenko National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001

PhD, Associate professor

Department of physics, theoretical mechanics and machine parts

Vadym Bredykhin, Kharkiv Petro Vasylenko National Technical University of Agriculture 44 Artyoma str., Kharkiv, Ukraine, 62001

PhD, Associate professor

Department of physics, theoretical mechanics and machine parts

Oleg Tsurkan, Vinnytsia National Agrarian University 3 Soniachna str., Vinnytsia, Ukraine, 21008

PhD, Associate professor

P. S. Bernik department of processes and processing equipment and food industries

References

  1. Tіshchenko, L., Kharchenko, S., Kharchenko, F., Vasilenko O., Puha, V. (2014). Separacіya gorohu ta nutu. The Ukrainian Farmer, 4, 94–95.
  2. Blehman, I. I. (1994). Vibracionnaya mexanika. Moscow: Fizmatlit, 400.
  3. Gortinskij, V. V. (1980). Processy separirovaniya na zernopererabatyvayushhix predpriyatiyax. Moscow: Kolos, 304.
  4. Zaika, P. M. (1977). Dinamika vibracionnyx zernoochistitelnyx mashin. Moscow: Mashinostroenie, 278.
  5. Minyajlo, A. V. (1973). Issledovanie processa separirovaniya semyan na ploskix gorizontalnyx vibroreshetax. Kharkiv, 165.
  6. Tishchenko, L. N., Ol’shanskii, V. P., Ol’shanskii, S. V. (2011). On velocity profiles of an inhomogeneous vibrofluidized grain bed on a shaker. Journal of Engineering Physics and Thermophysics, 84 (3), 509–514. doi: 10.1007/s10891-011-0498-4
  7. Tishchenko, L. N., Piven, M. V., Kharchenko, S. A. (2010). Matematicheskaya model protsessa segregatsii zernovyih smesey pri separirovanii ploskimi vibratsionnyimi reshetami. Mehanizatsiya silskogospodarskogo virobnitstva, 103, 12–20.
  8. Tishсhenko, L. N., Mazorenko, D. I., Piven, M. O., Kharchenko, S. A., Bredihin, V. V., Mandryka, A. V. (2010). Modelirovanie processov zernovyx separatorov. Kharkiv: «Mіskdruk», 360.
  9. Kharchenko, S. (2015). Modeling the dynamics of the grain mixtures with the screening on cylindrical vibrating sieve separators. ТЕКА. Сommission of motorization and energetics in agriculture, 15 (3), 87–93.
  10. Paolotti, D., Cattuto, C., Marini, U., Marconi, B., Puglisi, A. (2002). Dynamical properties of vibrofluidized granular mixture. arXiv:cond-mat207601, 1, 25.
  11. Pascoe, R. D., Fitzpatrick, R., Garratt, J. R. (2015). Prediction of automated sorter performance utilising a Monte Carlo simulation of feed characteristics. Minerals Engineering, 72, 101–107. doi: 10.1016/j.mineng.2014.12.026
  12. Pelevin, A. E. (2011). Probability of particles passing through the sieve openings and separation process in vibrational screening devices. Izvestiya vuzov, Min J (1), 119–129.
  13. Boac, J. M., Ambrose, R. P. K., Casada, M. E., Maghirang, R. G., Maier, D. E. (2014). Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Engineering Reviews, 6 (4), 128–149. doi: 10.1007/s12393-014-9090-y
  14. Ma, X.-D., Zhang, Y.-B., Liu, Y., Zheng, X.-W. (2016). Simulation of grain segregation under horizontal rotational oscillations. Granular Matter, 18 (1), 1–6. doi: 10.1007/s10035-015-0598-5
  15. Tishchenko, L. N., Kharchenko, S. A., Kharchenko, F. M. (2014). Ispolzovanie gidrodinamicheskoj analogii s primeneniem uravnenij Nave-Stoksa dlya resheniya zadach ochistki vozdushnogo potoka v pyleosadochnyx kamerax zernoochistitelnyx separatorov. Іnzhenerіya prirodokoristuvannya, 1, 56–64.
  16. Slipchenko, M. V. (2014). Issledovanie ochistki zernovyih smesey pri shode s tarelchatogo razbrasyivatelya pnevmosepariruyuschego ustroystva vibrotsentrobezhnogo eparatora. Motrol. Commission and Energetacs in Agriculture, 16 (7), 89–91.
  17. Rahou, F., Tilmatine, A., Bilici, M., Dascalescu, L. (2013). Numerical simulation of the continuous operation of a tribo-aero-electrostatic separator for mixed granular solids. Journal of Electrostatics, 71 (5), 867–874. doi: 10.1016/j.elstat.2013.06.004
  18. Akhmadiev, F. G., Gizzjatov, R. F. (2013). Separation Processes of Granular Materials by Sizes at the Sieve Classifiers. Journal of Chemistry and Chemical Engineering, 1 (7), 56–63.
  19. Ravshanov, N., Palvanov, B., Islamov, Y. (2013). Mathematical Model of suspension Filtration and Its Analytical Solution. European researcher, 58 (9), 2185–2192.
  20. Panasiewicz, M., Sobczak, P., Mazur, J., Zawiślak, K., Andrejko, D. (2012). The technique and analysis of the process of separation and cleaning grain materials. Journal of Food Engineering, 109 (3), 603–608. doi: 10.1016/j.jfoodeng.2011.10.010
  21. Tishchenko, L., Kharchenko, S. (2013). K primeneniyu metodov mexaniki sploshnyx sred dlya opisaniya dvizheniya zernovyx smesej na vibroreshetax. MOTROL. Commission of Motorization and Energetics in Agriculture, 15 (7), 94–99.
  22. Kharchenko, S. A. (2013). Postroenie reshenij uravnenij dinamiki zernovyx smesej na ploskix vibroreshetax. Konstruyuvannya, virobnictvo ta ekspluatacіya s.g. mashin, 43, Part ІІ, 287–292.
  23. Kharchenko, S. A., Tischenko, L. N. (2013). Algoritm rascheta effektivnogo koeffitsienta dinamicheskoy vyazkosti puzyirkovoy psevdozhidkosti, modeliruyuschey separiruemuyu zernovuyu smes. Vibratsiyi v tehnitsi ta tehnologiyah, 2 (70), 64–72.
  24. Yampilov, S. S. (2004). Texnologicheskie i texnicheskie resheniya problemy ochistki zerna reshetami. Ulan-Ude, 165.
  25. Gaur, P. M., Tripathi, S., Gowda, C. L. L., Ranga Rao, G. V., Sharma, H. C., Pande, S., Sharma, M. (2010). Chickpea Seed Production Manual. International Crops Research Institute for the Semi-Arid Tropics, 28.

Published

2016-04-23

How to Cite

Tishchenko, L., Kharchenko, S., Kharchenko, F., Bredykhin, V., & Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2(7(80), 63–69. https://doi.org/10.15587/1729-4061.2016.65920

Issue

Section

Applied mechanics