Examining the formation and properties of TiO2 oxide coatings with metals of iron triad





catalyst, titanium oxides, oxide coatings, plasma-electrolytic oxidizing, catalytic activity


We proposed a composition of citrate-pyrophosphate electrolytes with the addition of sulfates of iron triad metals for the formation of mixed oxide systems with the varied content of dopants. The introduction of an additional ligand contributes to an increase in the stability, operation period of working solutions and to the more uniform distribution of metals-dopants. The range of voltages for the single-stage plasma-electrolytic oxidizing of titanium alloys BT1-0 and OT4-1 is 120–160 V. As a result of oxidizing, we obtained metal-oxide systems TiOx·MOy (M=Fe, Co, Ni), which, depending on the nature of a dopant, have different types of surface structures. The largest content of dopant and the minimum size of the grain are characteristic of the cobalt-containing coatings. A potential possibility of obtaining the mixed oxide systems TiOx·(FeCoNi)Oy on the alloy OT4-1 is shown. We examined the dependences of spark voltage and the rate of change in the interelectrode voltage on the concentration of dopants in electrolyte. It was established that the formed mixed oxide coatings of titanium with the iron triad metals possess significant corrosion resistance; the highest value is inherent to the systems based on cobalt. It is shown that the incorporation of iron triad metals into the composition of oxide layers leads to an increase in the degree of surface development. This ensures an increase in the catalytic activity in the reactions of carbon mono-oxide oxidation. The obtained materials of varied thickness and morphology might be used in the technological systems of catalytic purification of natural and technogenic toxicants.

Author Biographies

Mykola Sakhnenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Physical Chemistry

Ann Karakurkchi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Head of Research Laboratory

Research Laboratory Military Training Faculty

Alexander Galak, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002


Department of Physical Chemistry

Sergey Menshov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate student

Department of Physical Chemistry

Oleksii Matykin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate student

Department of Physical Chemistry


  1. Anpo, M., Kamat, P. V. (2010). Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials. Springer New York, 757. doi: 10.1007/978-0-387-48444-0
  2. Bagheri, S., Muhd Julkapli, N., Bee Abd Hamid, S. (2014). Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. The Scientific World Journal, 2014, 1–21. doi: 10.1155/2014/727496
  3. Lanziano, C. S., Rodriguez, F., Rabelo, S. C., Guirardello, R., da Silva, V. T., Rodella, C. B. (2014). Catalytic Conversion of Glucose Using TiO2 Catalysts. Chemical Engineering Transactions, 37, 589–594.
  4. Gazquez, M. J., Bolivar, J. P., Garcia-Tenorio, R., Vaca, F. (2014). A Review of the Production Cycle of Titanium Dioxide Pigment. Materials Sciences and Applications, 05 (07), 441–458. doi: 10.4236/msa.2014.57048
  5. Lin, L., Chai, Y., Zhao, B., Wei, W., He, D., He, B., Tang, Q. (2013). Photocatalytic oxidation for degradation of VOCs. Open Journal of Inorganic Chemistry, 03 (01), 14–25. doi: 10.4236/ojic.2013.31003
  6. Berdahl, P., Akbari, H. (2008). Evaluation of Titanium Dioxide as a Photocatalyst for Removing Air Pollutants. California Energy Commission, PIER Energy‐Related Environmental Research Program, 33.
  7. Verma, A., Poonam, Dixit, D. (2012). Photocatalytic degradability of insecticide Chlorpyrifos over UV irradiated Titanium dioxide in aqueous phase. International Journal of Environmental Sciences, 3 (2), 743–755.
  8. Herrmann, J.-M., Guillard, C., Disdier, J., Lehaut, C., Malato, S., Blanco, J. (2002). New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. Applied Catalysis B: Environmental, 35 (4), 281–294. doi: 10.1016/s0926-3373(01)00265-x
  9. Fujishima, A., Hashimoto, K., Watanabe, T. (1999). TiO2 Photocatalysis: Fundamentals and Applications. Tokyo, 176.
  10. Hashimoto, K., Irie, H., Fujishima, A. (2005). TiO 2 Photocatalysis: A Historical Overview and Future Prospects . Japanese Journal of Applied Physics, 44 (12), 8269–8285. doi: 10.1143/jjap.44.8269
  11. Ismagilov, Z. R., Tsikoza, L. T., Shikina, N. V., Zarytova, V. F., Zinoviev, V. V., Zagrebelnyi, S. N. (2009). Synthesis and stabilization of nano-sized titanium dioxide. Russian Chemical Reviews, 78 (9), 873–885. doi: 10.1070/rc2009v078n09abeh004082
  12. Chaturvedi, S., Dave, P. N., Shah, N. K. (2012). Applications of nano-catalyst in new era. Journal of Saudi Chemical Society, 16 (3), 307–325. doi: 10.1016/j.jscs.2011.01.015
  13. Gupta, P., Tenhundfeld, G., Daigle, E. O., Ryabkov, D. (2007). Electrolytic plasma technology: Science and engineering – An overview. Surface and Coatings Technology, 201 (21), 8746–8760. doi: 10.1016/j.surfcoat.2006.11.023
  14. Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M. (2016). Plasma electrolytic oxide layers as promising systems for catalysis. Surface and Coatings Technology, 307, 1183–1193. doi: 10.1016/j.surfcoat.2016.06.076
  15. Rokosz, K., Hryniewicz, T., Raaen, S., Chapon, P., Dudek, L. (2016). GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation. Surface and Interface Analysis, 49 (4), 303–315. doi: 10.1002/sia.6136
  16. Sakhnenko, N. D., Ved, M. V., Bykanova, V. V. (2014). Characterization and photocatalytic activity of Ti/TinOm∙ZrxOy coatings for azo-dye degradation. Functional materials, 21 (4), 492–497. doi: 10.15407/fm21.04.492
  17. Glushkova, M., Bairachna, T., Ved’, M., Sakhnenko, M. (2013). Electrodeposited cobalt alloys as materials for energy technology. MRS Proceedings, 1491, 18–23. doi 10.1557/opl.2012.1672
  18. Rudnev, V. S., Morozova, V. P., Kaidalova, T. A., Nedozorov, P. M. (2007). Iron- and nickel-containing oxide-phosphate layers on aluminum and titanium. Russian Journal of Inorganic Chemistry, 52 (9), 1350–1354. doi: 10.1134/s0036023607090069
  19. Sakhnenko, N. D., Ved’, M. V., Androshchuk, D. S., Korniy, S. A. (2016). Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surface Engineering and Applied Electrochemistry, 52 (2), 145–151. doi: 10.3103/s1068375516020113
  20. Boguta, D. L., Rudnev, V. S., Terleeva, O. P., Belevantsev, V. I., Slonova, A. I. (2005). Effect of ac Polarization on Characteristics of Coatings formed from Polyphosphate Electrolytes of Ni(II) and Zn(II). Russian Journal of Applied Chemistry, 78 (2), 247–253. doi: 10.1007/s11167-005-0269-0
  21. Bykanova, V. V., Sakhnenko, N. D., Ved’, M. V. (2015). Synthesis and photocatalytic activity of coatings based on the Ti x Zn y O z system. Surface Engineering and Applied Electrochemistry, 51 (3), 276–282. doi: 10.3103/s1068375515030047
  22. Vasilyeva, M. S., Rudnev, V. S., Ustinov, A. Y., Korotenko, I. A., Modin, E. B., Voitenko, O. V. (2010). Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation. Applied Surface Science, 257 (4), 1239–1246. doi: 10.1016/j.apsusc.2010.08.031
  23. Ved, M. V., Sakhnenko, N. D., Nikiforov, K. V. (1998). Stability control of adhesional interaction in a protective coating/metal system. Journal of Adhesion Science and Technology, 12 (2), 175–183. doi: 10.1163/156856198x00047
  24. Sakhnenko, N., Ved, M., Karakurkchi, A., Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3 (5 (81)), 37–43. doi: 10.15587/1729-4061.2016.69390
  25. Snytnikov, P. V., Belyaev, V. A., Sobyanin, V. A. (2007). Kinetic model and mechanism of the selective oxidation of CO in the presence of hydrogen on platinum catalysts. Kinetics and Catalysis, 48 (1), 93–102. doi: 10.1134/s0023158407010132
  26. Karakurkchi, A. V., Ved’, M. V., Sakhnenko, N. D., Yermolenko, I. Y. (2015). Electrodeposition of iron-molybdenum-tungsten coatings from citrate electrolytes. Russian Journal of Applied Chemistry, 88 (11), 1860–1869. doi: 10.1134/s1070427215011018x
  27. Sakhnenko, N. D., Ved, M. V., Hapon, Y. K., Nenastina, T. A. (2015). Functional coatings of ternary alloys of cobalt with refractory metals. Russian Journal of Applied Chemistry, 88 (12), 1941–1945. doi: 10.1134/s1070427215012006x




How to Cite

Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., & Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2(11 (86), 4–10. https://doi.org/10.15587/1729-4061.2017.97550



Materials Science