A method of building type-2 fuzzy logic systems in multidimensional objects identification problems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.101635

Keywords:

type-2 fuzzy logic system, type-2 fuzzy sets, interval membership function, optimization criterion

Abstract

A generalized method for developing partially formalized objects identification fuzzy models by direct rule generation based on experimental data is formulated. Models built according to this principle have the intrinsic ability to operate in accordance with the observation data. Under the condition of the initial experimental data set being representational enough, they may not even require additional tuning of the membership functions parameters.

Still, systems developed based on experimental data are often redundant, and may require corrections of the input feature set magnitude. An approach for modifying the number of model inputs is proposed. It allows to do so without the model losing its capability to adequately reflect the subject area.

In order to develop a fuzzy logic system, which would reflect the subject area in an adequate manner, an optimization criterion is proposed, measuring the increase in mutual information reflecting from a fuzzy logic system’s inputs to its outputs. Under the condition of maintaining the system’s capability for adequate decision making, a sequence of steps required for developing a type-2 fuzzy logic system, optimal according to the considered criterion, is shown.

This paper provides justification for type-2 fuzzy sets being appropriate for use in mathematical models dealing with uncertain input data. The justification is performed theoretically, based on information theory considerations, and confirmed experimentally.

The proposed method enables solving applied problems of identifying multidimensional objects, such as an environmental system

Author Biographies

Natalia Kondratenko, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnytsia, Ukraine, 21021

PhD, Associate Professor

Department of information security

Olha Snihur, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnytsia, Ukraine, 21021

Postgraduate student

Department of information security

References

  1. Minaev, Yu. N. (2003). Metody i algoritmy resheniya zadach identifikacii i prognozirovaniya v usloviyah neopredelennosti v neyrosetevom logicheskom bazise. Moscow: Goryachaya liniya-Telekom, 205.
  2. Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100, 9–34. doi: 10.1016/s0165-0114(99)80004-9
  3. Liang, Q., Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 8 (5), 535–550. doi: 10.1109/91.873577
  4. Zeng, J., Liu, Z.-Q. (2007). Type-2 Fuzzy Sets for Pattern Classification: A Review. 2007 IEEE Symposium on Foundations of Computational Intelligence. doi: 10.1109/foci.2007.372168
  5. Venkata Subba Reddy, P., Sadana, A. (2015). Fuzzy Medical Expert Systems for Clinical Medicine Learning Through the Fuzzy Neural Network. International Journal of Clinical Medicine Research, 2 (5), 54–60.
  6. Dahіya, S., Sіngh, B., Gaur, S., Garg, V. K., Kushwaha, H. S. (2007). Analysіs of groundwater qualіty usіng fuzzy synthetіc evaluatіon. Journal of Hazardous Materіals, 147 (3), 938–946.
  7. Raskin, L. G., Seraya, O. V., Katkova, T. I., Golovko, V. A. (2013). Informacionnoe obespechenie nechetkih ehkspertnyh system. Systemy obrobky informatsiyi, 6 (113), 13–16.
  8. Raskin, L. G., Seraya, O. V., Dunaevskaya, O. I. (2012). Fuzzy model of nonlinear multi-index transportation problem. Eastern-European Journal of Enterprise Technologies, 6, (4 (60)), 15–17. Available at: http://journals.uran.ua/eejet/article/view/5676/5106
  9. Samuel, O. W., Omisore, M. O., Ojokoh, B. A. (2013). A web based decision support system driven by fuzzy logic for the diagnosis of typhoid fever. Expert Systems with Applications, 40 (10), 4164–4171. doi: 10.1016/j.eswa.2013.01.030
  10. Agrawal, P., Madaan, V., Kumar, V. (2015). Fuzzy rule-based medical expert system to identify the disorders of eyes, ENT and liver. International Journal of Advanced Intelligence Paradigms, 7 (3/4), 352. doi: 10.1504/ijaip.2015.073714
  11. Zamani Sabzi, H., Humberson, D., Abudu, S., King, J. P. (2016). Optimization of adaptive fuzzy logic controller using novel combined evolutionary algorithms, and its application in Diez Lagos flood controlling system, Southern New Mexico. Expert Systems with Applications, 43, 154–164. doi: 10.1016/j.eswa.2015.08.043
  12. Sun, Z., Wang, N., Bi, Y. (2015). Type-1/type-2 fuzzy logic systems optimization with RNA genetic algorithm for double inverted pendulum. Applied Mathematical Modelling, 39 (1), 70–85. doi: 10.1016/j.apm.2014.04.035
  13. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikacii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnica: «UNIVERSUM–Vіnnicya», 320.
  14. Bilan, S. M., Kondratenko, N. R., Tkachuk, O. A. (2004). Doslidzhennya mozhlyvostey henetychnoho alhorytmu v zadachakh pro komivoyazhera. Reyestratsiya, zberihannya i obrobka danykh, 6 (3), 50–57.
  15. Kondratenko, N. R., Cheboraka, O. V., Tkachuk, O. A. (2011). Interval'ni nechitki modeli typu-2 v zadachakh identyfikatsiyi ob'yektiv z bahat'ma vkhodamy ta vykhodamy. Systemy obrobky informatsiyi, 3 (93), 48–52.
  16. Noshadi, A., Shi, J., Lee, W. S., Shi, P., Kalam, A. (2015). Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Computing and Applications, 27 (7), 2031–2046. doi: 10.1007/s00521-015-1996-7
  17. Kondratenko, N. R., Zelins'ka, N. B., Kuzemko, S. M. (2004). Nechitki lohichni systemy z vrakhuvannyam propuskiv v eksperymental'nykh danykh. Naukovi visti natsional'noho tekhnichnoho universytetu Ukrayiny “Kyyivs'kyy politekhnichnyy instytut”, 5, 37–41.
  18. Kondratenko, N. R. (2014). Pidvyshchennya adekvatnosti nechitkykh modeley za rakhunok vykorystannya nechitkykh mnozhyn typu 2. Naukovi visti natsional'noho tekhnichnoho universytetu Ukrayiny “Kyyivs'kyy politekhnichnyy instytut”, 6, 56–61.
  19. Kondratenko, N., Snihur, O. (2016). Interval fuzzy modeling of complex systems under condіtіons of іnput data uncertaіnty. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 20–28. doi: 10.15587/1729-4061.2016.75679
  20. Harkevich, A. A. (Ed.) (1959). Teoriya informacii i ee prilozheniya (sbornik perevodov). Moscow: Fizmatgiz, 328.
  21. Karnik, N. N., Mendel, J. M., Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7 (6), 643–658. doi: 10.1109/91.811231

Downloads

Published

2017-06-30

How to Cite

Kondratenko, N., & Snihur, O. (2017). A method of building type-2 fuzzy logic systems in multidimensional objects identification problems. Eastern-European Journal of Enterprise Technologies, 3(4 (87), 38–45. https://doi.org/10.15587/1729-4061.2017.101635

Issue

Section

Mathematics and Cybernetics - applied aspects