DOI: https://doi.org/10.15587/1729-4061.2017.101725

Modeling of destruction processes during recycling of rubber-technical waste using the technology of multi-contour circulation pyrolysis

Serhiy Ryzhkov, Lyudmila Markina, Marharyta Kryva

Abstract


We performed modeling of the processes of destruction during recycling of rubber-technical waste in line with the technology of multi-contour circulation pyrolysis. The purpose of the present study is to develop a mathematical model for the process of thermal recycling of rubber-technical waste in line with the technology of multi-contour circulation pyrolysis.

We developed a scheme of destructive transformations of the starting mass of waste, taking into account kinetics of the process of thermal decomposition of rubber and material flows of the formed phases in the equipment.

We constructed a mathematical model of kinetic regularities and of the rate of destruction of rubber-technical waste depending on the concentration of original and resulting components. Kinetic parameters and the reaction rate are used for subsequent modeling of the recycling process and for determining the end products of waste decomposition.

Result of present research and theoretical modeling is the calculations of the concentration of gaseous and condensed substances – products of thermal decomposition of the original mass of waste, formed in the range of 450–600 °С.

Application of the given model is necessary when optimizing temperature modes of the equipment. The use of the model might be promising while creating industrial plants with a set productivity. It could also provide the possibility of recycling of different types of organic waste and their mixtures in line with the technology of multi-contour circulation pyrolysis.

Modeling that was performed justifies the reasons and foundations to control the process of repeated condensation and recirculation of heavy condensed flows of vapor and gas mixture. Therefore, if one knows the original composition of vapor and gas mixture from the reactor, it is possible to optimize cooling temperatures in contours to obtain the end product of required quality.

Keywords


thermal destruction; recycling of rubber-technical wastes; material balance; concentration of vapor and gas mixture

References


Markina, L. M. (2008). Modeling research of processing organic waste by multicircuit circulatory pyrolysis obtaining alternative fuels. Collection of Scientific Publications NUS, 4, 101–109.

Osayi, J. I., Iyuke, S., Ogbeide, S. E. (2014). Biocrude Production through Pyrolysis of Used Tyres. Journal of Catalysts, 2014, 1–9. doi: 10.1155/2014/386371

Ani, F. N., Mat Nor, N. S. (2012). Microwave induced fast pyrolysis of scrap rubber tires. AIP Conference Proceedings, 1440 (1), 834–841. doi: 10.1063/1.4704294

Rofiqul Islam, M., Parveen, M., Haniu, H., Islam Sarker, M. R. (2010). Innovation in Pyrolysis Technology for Management of Scrap Tire: a Solution of Energyand Environment. International Journal of Environmental Science and Development, 1 (1), 89–96. doi: 10.7763/ijesd.2010.v1.18

Zhang, X., Wang, T., Ma, L., Chang, J. (2008). Vacuum pyrolysis of waste tires with basic additives. Waste Management, 28 (11), 2301–2310. doi: 10.1016/j.wasman.2007.10.009

Islam, M. N., Nahian, M. R. (2016). Improvement of Waste Tire Pyrolysis Oil and Performance Test with Diesel in CI Engine. Journal of Renewable Energy, 2016, 1–8. doi: 10.1155/2016/5137247

Kalitko, V. A. (2010). Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam. Journal of Engineering Physics and Thermophysics, 83 (1), 179–187. doi: 10.1007/s10891-010-0333-3

Kalitko, U. (2012). Waste Tire Pyrolysis Recycling with Steaming: Heat-Mass Balances & Engineering Solutions for By-Products Quality. Material Recycling – Trends and Perspectives. doi: 10.5772/31535

Brems, A., Baeyens, J., Vandecasteele, C., Dewil, R. (2011). Polymeric Cracking of Waste Polyethylene Terephthalate to Chemicals and Energy. Journal of the Air & Waste Management Association, 61 (7), 721–731. doi: 10.3155/1047-3289.61.7.721

Zaitseva, T. A. (2010). The landfill for solid domestic waste (tbo) is an anthropogenic ecological system. Research and Innovation, 4, 35–43.

Ryzhkov, S. S., Markina, L. M., Kryva, M. S., Hlyniana, V. V. (2015). Analysis of the main thermodynamic parameters of multistage circulation pyrolysis of organic waste. Collection of Scientific Publications NUS, 4, 104–112. doi: 10.15589/jnn20150415

Ryzhkov, S. S., Markina, L. M., Kryva, M. S. (2012). Features analysis of physical and chemical processes of multicircuit circulatory pyrolysis of organic waste. Collection of Scientific Publications NUS, 5-6, 125–131.

Aisien, F. A., Ebewele, R. O., Hymore, F. K. (2011). Mathematical Model of Sorption Kinetics of Crude Oil by Rubber Particles from Scrap Tyres. Leonardo Journal of Sciences, 18, 85–96. Available at: http://ljs.academicdirect.org/A18/085_096.pdf

Ryzhkov, S. S., Markina, L. M., Kryva, M. S. (2013). Research of kinetics of thermal destraction of organic waste. Ecological safety, 2, 82–88.


GOST Style Citations


Markina, L. M. Modeling research of processing organic waste by multicircuit circulatory pyrolysis obtaining alternative fuels [Text] / L. M. Markina // Collection of Scientific Publications NUS. – 2008. – Issue 4. – P. 101–109.

Osayi, J. I. Biocrude Production through Pyrolysis of Used Tyres [Text] / J. I. Osayi, S. Iyuke, S. E. Ogbeide // Journal of Catalysts. – 2014. – Vol. 2014. – P. 1–9. doi: 10.1155/2014/386371 

Ani, F. N. Microwave induced fast pyrolysis of scrap rubber tires [Text] / F. N. Ani, N. S. Mat Nor // AIP Conference Proceedings. – 2012. – Vol. 1440, Issue 1. – P. 834–841. doi: 10.1063/1.4704294 

Rofiqul Islam, M. Innovation in Pyrolysis Technology for Management of Scrap Tire: a Solution of Energyand Environment [Text] / M. Rofiqul Islam, M. Parveen, H. Haniu, M. R. Islam Sarker // International Journal of Environmental Science and Development. – 2010. – Vol. 1, Issue 1. – P. 89–96. doi: 10.7763/ijesd.2010.v1.18 

Zhang, X. Vacuum pyrolysis of waste tires with basic additives [Text] / X. Zhang, T. Wang, L. Ma, J. Chang // Waste Management. – 2008. – Vol. 28, Issue 11. – P. 2301–2310. doi: 10.1016/j.wasman.2007.10.009 

Islam, M. N. Improvement of Waste Tire Pyrolysis Oil and Performance Test with Diesel in CI Engine [Text] / M. N. Islam, M. R. Nahian // Journal of Renewable Energy. – 2016. – Vol. 2016. – P. 1–8. doi: 10.1155/2016/5137247 

Kalitko, V. A. Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam [Text] / V. A. Kalitko // Journal of Engineering Physics and Thermophysics. – 2010. – Vol. 83, Issue 1. – P. 179–187. doi: 10.1007/s10891-010-0333-3 

Kalitko, U. Waste Tire Pyrolysis Recycling with Steaming: Heat-Mass Balances & Engineering Solutions for By-Products Quality [Text] / U. Kalitko // Material Recycling – Trends and Perspectives. – 2012. doi: 10.5772/31535 

Brems, A. Polymeric Cracking of Waste Polyethylene Terephthalate to Chemicals and Energy [Text] / A. Brems, J. Baeyens, C. Vandecasteele, R. Dewil // Journal of the Air & Waste Management Association. – 2011. – Vol. 61, Issue 7. – P. 721–731. doi: 10.3155/1047-3289.61.7.721 

Zaitseva, T. A. The landfill for solid domestic waste (tbo) is an anthropogenic ecological system [Text] / T. A. Zaitseva // Research and Innovation. – 2010. – Issue 4. – P. 35–43

Ryzhkov, S. S. Analysis of the main thermodynamic parameters of multistage circulation pyrolysis of organic waste [Text] / S. S. Ryzhkov, L. M. Markina, M. S. Kryva, V. V. Hlyniana // Collection of Scientific Publications NUS. – 2015. – Issue 4. – P. 104–112. doi: 10.15589/jnn20150415 

Ryzhkov, S. S. Features analysis of physical and chemical processes of multicircuit circulatory pyrolysis of organic waste [Text] / S. S. Ryzhkov, L. M. Markina, M. S. Kryva // Collection of Scientific Publications NUS. – 2012. – Issue 5-6. – P. 125–131.

Aisien, F. A. Mathematical Model of Sorption Kinetics of Crude Oil by Rubber Particles from Scrap Tyres [Text] / F. A. Aisien, R. O. Ebewele, F. K. Hymore // Leonardo Journal of Sciences. – 2011. – Issue 18. – P. 85–96. – Available at: http://ljs.academicdirect.org/A18/085_096.pdf

Ryzhkov, S. S. Research of kinetics of thermal destraction of organic waste [Text] / S. S. Ryzhkov, L. M. Markina, M. S. Kryva // Ecological safety. – 2013. – Issue 2. – P. 82–88.







Copyright (c) 2017 Serhiy Ryzhkov, Lyudmila Markina, Marharyta Kryva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061