Research into influence of the electrolysis modes on the composition of galvanic Fe-Co-Mo coatings

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.103100

Keywords:

current amplitude, pulse mode, Fe-Co-Mo coatings, ternary alloys, citrate electrolyte

Abstract

We examined the influence of the energy (current density і) and temporal (duration of pulse ton and pause toff, the ratio of ton/toff) parameters of the electrolysis on the composition and morphology of the Fe-Co-Mo coatings. An increase in the pulse duration contributes to the enrichment of alloy with molybdenum in proportion to the increasing current density. At the ratio of pulse/pause ton/toff>1–2, the composition of an alloy changes towards an increase in the content of iron. We demonstrated a tendency of the enrichment of coatings with a high-melting component and a decrease in the content of iron with an increase in the current density. It is shown that with an increase in the current density, the surface of coatings changes from the fine-grained to the globular structure. It was established that at fixed ton/toff, the power yield grows with an increase in the pulse duration over the entire interval of current densities. With an increase in the current density (at ton/toff=const) we observe a reduction in the process efficiency. It was found that the most optimal for obtaining the soft magnetic Fe-Co-Mo coatings is the current amplitude of 3 A/dm2, the duration of pulse 2–5 ms and of pause 10–20 ms. Current at amplitude of 5 A/dm2 is recommended when obtaining materials with the content of a high-melting component larger than 15 аt. %. It is shown that the regime of the unipolar pulse current makes it possible to obtain the Fe-Co-Mo coatings with the content of iron of 58–46 аt. %, cobalt – 34–43 аt. % and molybdenum – 6–17 аt. %. The results obtained create prerequisites to control the composition and properties of the Fe-Co-Mo coatings with a wide range of content of the alloy-forming components.

Author Biographies

Iryna Yermolenko, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Research Laboratory 

Maryna Ved`, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of General and Inorganic Chemistry

Ann Karakurkchi, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Head of Laboratory

Research Laboratory

Valeriya Proskurina, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Assistant

Department of General and Inorganic Chemistry

Irina Sknar, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Yaroslav Kozlov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Energetics

Olga Sverdlikovska, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processing polymers and photo-, nano -, and polygraphic materials

Oleksii Sigunov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Chemical Technology of Astringent Materials

References

  1. Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., Podlaha-Murphy, E. J. (2012). Modern trends in tungsten alloys electrodeposition with iron group metals. Surface Engineering and Applied Electrochemistry, 48 (6), 491–520. doi: 10.3103/s1068375512060038
  2. Podlaha, E. J. (1997). Induced Codeposition. Journal of The Electrochemical Society, 144 (5), 1672. doi: 10.1149/1.1837658
  3. Tsyntsaru, N., Dikusar, A., Cesiulis, H., Celis, J.-P., Bobanova, Z., Sidel’nikova, S. et. al. (2009). Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metallurgy and Metal Ceramics, 48 (7-8), 419–428. doi: 10.1007/s11106-009-9150-7
  4. Yar-Mukhamedova, G., Ved, M., Sakhnenko, N., Karakurkchi, A., Yermolenko, I. (2016). Iron binary and ternary coatings with molybdenum and tungsten. Applied Surface Science, 383, 346–352. doi: 10.1016/j.apsusc.2016.04.046
  5. Ramanauskas, R., L. Gudaviciute, R. Juskenas (2008). Effect of pulse plating on the composition and corrosion properties of Zn-Co and Zn-Fe alloy coatings. Chemija, 19 (1), 7–13.
  6. Ved’, M. V., Sakhnenko, N. D., Karakurchi, A. V., Zyubanova, S. I. (2014). Electrodeposition of iron-molybdenum coatings from citrate electrolyte. Russian Journal of Applied Chemistry, 87 (3), 276–282. doi: 10.1134/s1070427214030057
  7. Danilov, F. I., Sknar, I. V., Sknar, Y. E. (2014). Electroplating of Ni-Fe alloys from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 50 (3), 293–296. doi: 10.1134/s1023193514030045
  8. Weston, D. P., Harris, S. J., Shipway, P. H., Weston, N. J., Yap, G. N. (2010). Establishing relationships between bath chemistry, electrodeposition and microstructure of Co–W alloy coatings produced from a gluconate bath. Electrochimica Acta, 55 (20), 5695–5708. doi: 10.1016/j.electacta.2010.05.005
  9. Cirovic, N., Spasojevic, P., Ribic-Zelenovic, L., Maskovic, P., Spasojevic, M. (2015). Synthesis, structure and properties of nickel-iron-tungsten alloy electrodeposits – part I: Effect of synthesis parameters on chemical composition, microstructure and morphology. Science of Sintering, 47 (3), 347–365. doi: 10.2298/sos1503347c
  10. Hatchard, T. D., Harlow, J. E., Cullen, K. M., Dunlap, R. A., Dahn, J. R. (2012). Non–Noble Metal Catalysts Prepared from Fe in Acid Solution. Journal of The Electrochemical Society, 159 (2), B121. doi: 10.1149/2.023202jes
  11. Vernickaite, E., Tsyntsaru, N., Cesiulis, H. (2016). Electrodeposited Co-W alloys and their prospects as effective anode for methanol oxidation in acidic media. Surface and Coatings Technology, 307, 1322–1328. doi: 10.1016/j.surfcoat.2016.07.049
  12. Tsyntsaru, N. I., Belevskii, S. S., Volodina, G. F., Bersirova, O. L., Yapontseva, Y. S., Kublanovskii, V. S., Dikusar, A. I. (2007). Composition, structure, and corrosion properties of coatings of Co-W alloys electrodeposited under direct current. Surface Engineering and Applied Electrochemistry, 43 (5), 312–317. doi: 10.3103/s106837550705002x
  13. Spasojevića, M., Ćirovićb N., Ribić-Zelenovića L., Spasojevićb P., Maričić A. (2014). Effect of Deposition Current Density and Annealing Temperature on the Microstructure, Hardness and Magnetic Properties of Nanostructured Nickel-Iron-Tungsten Alloys. Journal of the Electrochemical Society, 161 (10), D463–D469. doi: 10.1149/2.0041410jes
  14. Vernickaite, E., Antar, Z. Z., Nicolenco, A., Kreivaitis, R., Tsyntsaru, N., Cesiulis, H. (2015). Tribological and Corrosion Properties of Iron-Based Alloys. Proceedings of the 8th International Scientific Conference “BALTTRIB 2015.” doi: 10.15544/balttrib.2015.29
  15. Silkin, S. A., Gotelyak, A. V., Tsyntsaru, N., Dikusar, A. I., Kreivaitis, R., Padgurskas, J. (2015). Effect of Bulk Current Density on Tribological Properties of Fe-W, Co-W and Ni-W Coatings. Proceedings of the 8th International Scientific Conference “BALTTRIB 2015.” doi: 10.15544/balttrib.2015.10
  16. Grgur, B., Krstajic, N., Elezovic, N., Jovic, V. (2005). Electrodeposition and characterization of Fe–Mo alloys as cathodes for hydrogen evolution in the process of chlorate production. Journal of the Serbian Chemical Society, 70 (6), 879–889. doi: 10.2298/jsc0506879g
  17. Glushkova, M., Bairachna, T., Ved, M., Sakhnenko, M. (2012). Electrodeposited Cobalt Alloys as Materials for Energy Technology. MRS Proceedings, 1491. doi: 10.1557/opl.2012.1672
  18. Yapontseva, Y. S., Dikusar, A. I., Kyblanovskii, V. S. (2014). Study of the composition, corrosion, and catalytic properties of Co-W alloys electrodeposited from a citrate pyrophosphate electrolyte. Surface Engineering and Applied Electrochemistry, 50 (4), 330–336. doi: 10.3103/s1068375514040139
  19. Ma, L. (2017). Electrodeposition and Characterization of Co-W Alloy from Regenerated Tungsten Salt. International Journal of Electrochemical Science, 1034–1051. doi: 10.20964/2017.02.37
  20. Capel, H., Shipway, P. H., Harris, S. J. (2003). Sliding wear behaviour of electrodeposited cobalt–tungsten and cobalt–tungsten–iron alloys. Wear, 255 (7-12), 917–923. doi: 10.1016/s0043-1648(03)00241-2
  21. Gomez, E., Pellicer, E., Alcobe, X., Valles, E. (2004). Properties of Co-Mo coatings obtained by electrodeposition at pH 6.6. Journal of Solid State Electrochemistry, 8 (7), 497–504. doi: 10.1007/s10008-004-0495-z
  22. Gomez, E., Pellicer, E., Valles, E. (2001). Electrodeposited cobalt molybdenum magnetic materials. Journal of Electroanalytical Chemistry, 517 (1-2), 109–116. doi: 10.1016/s0022-0728(01)00682-9
  23. Gomez, E., Kipervaser, Z. G., Pellicer, E., Valles, E. (2004). Extracting deposition parameters for cobalt–molybdenum alloy from potentiostatic current transients. Phys. Chem. Chem. Phys., 6 (6), 1340–1344. doi: 10.1039/b315057g
  24. Anicai, L., Costovici, S., Cojocaru, A., Manea, A., Visan, T. (2015). Electrodeposition of Co and CoMo alloys coatings using choline chloride based ionic liquids – evaluation of corrosion behaviour. Transactions of the IMF, 93 (6), 302–312. doi: 10.1080/00202967.2015.1117262
  25. Zabinski, P., Mech, K., Kowalik, R. (2012). Co-Mo and Co-Mo-C Alloys Deposited in a Magnetic Field of High Intensity and their Electrocatalytic Properties. Archives of Metallurgy and Materials, 57 (1). doi: 10.2478/v10172-012-0001-z
  26. Kublanovsky, V. S., Yapontseva, Y. S. (2014). Electrocatalytic Properties of Co-Mo Alloys Electrodeposited from a Citrate-Pyrophosphate Electrolyte. Electrocatalysis, 5 (4), 372–378. doi: 10.1007/s12678-014-0197-y
  27. Ved, M. (2013). Catalytic properties of binary and ternary alloys based on silver. Functional Materials, 20 (1), 87–91. doi: 10.15407/fm20.01.087
  28. Ved’, M. V., Sakhnenko, M. D., Karakurkchi, H. V., Ermolenko, I. Y., Fomina, L. P. (2016). Functional Properties of Fe−Mo and Fe−Mo−W Galvanic Alloys. Materials Science, 51 (5), 701–710. doi: 10.1007/s11003-016-9893-5
  29. Feng-jiao, H., Jing-tian, L., Xin, L., Yu-ning, H. (2004). Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits. Trans. Nonferrous Met. Soc. China., 14 (5), 901–906.
  30. Sakhnenko, N. D., Ved, M. V., Hapon, Y. K., Nenastina, T. A. (2015). Functional coatings of ternary alloys of cobalt with refractory metals. Russian Journal of Applied Chemistry, 88 (12), 1941–1945. doi: 10.1134/s1070427215012006x
  31. Ved’, M. V., Sakhnenko, M. D., Bohoyavlens’ka, O. V., Nenastina, T. O. (2008). Modeling of the surface treatment of passive metals. Materials Science, 44 (1), 79–86. doi: 10.1007/s11003-008-9046-6
  32. Karakurkchi, A. V., Ved’, M. V., Sakhnenko, N. D., Yermolenko, I. Y. (2015). Electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes. Russian Journal of Applied Chemistry, 88 (11), 1860–1869. doi: 10.1134/s1070427215011018x
  33. Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi: 10.3103/s1068375516010087
  34. Gomez, E., Pellicer, E., Valles, E. (2004). Electrodeposition of soft-magnetic cobalt–molybdenum coatings containing low molybdenum percentages. Journal of Electroanalytical Chemistry, 568, 29–36. doi: 10.1016/j.jelechem.2003.12.032
  35. Yermolenko, I. Yu., Ved’, M. V., Sakhnenko, N. D., Zubanova, S. I., Tychyna, O. N. (2017). AFM surface analysis of Fe-Co-Mo electrolytic coatings. Himia, Fizika ta Tehnologia Poverhni, 8 (1), 91–97. doi: 10.15407/hftp08.01.091
  36. Ghaferi, Z., Sharafi, S., Bahrololoom, M. E. (2016). The role of electrolyte pH on phase evolution and magnetic properties of CoFeW codeposited films. Applied Surface Science, 375, 35–41. doi: 10.1016/j.apsusc.2016.03.063
  37. Ved, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Yermolenko, I. Yu. (2014). Electroplating and functional properties of Fe–Mo and Fe–Mo–W coatings. Voprosy khimii i khimicheskoi tekhnologii, 5 (6 (98)), 53–60.
  38. Danilov, F. I., Protsenko, V. S., Ubiikon’, A. V. (2005). Kinetic Regularities Governing the Reaction of Electrodeposition of Iron from Solutions of Citrate Complexes of Iron(III). Russian Journal of Electrochemistry, 41 (12), 1282–1289. doi: 10.1007/s11175-005-0216-7
  39. Shul’man, A. I., Belevskii, S. S., Yushchenko, S. P., Dikusar, A. I. (2014). Role of complexation in forming composition of Co-W coatings electrodeposited from gluconate electrolyte. Surface Engineering and Applied Electrochemistry, 50 (1), 9–17. doi: 10.3103/s106837551401013x
  40. Tochitskiy, A., Dmitrieva, A. E. (2013). On the Mechanism of X-Ray Amorphous Structure Formation in Ni-W Alloys Film. Metallofizika i noveyshie tekhnologii, 35 (12), 1629–1636.

Downloads

Published

2017-06-19

How to Cite

Yermolenko, I., Ved`, M., Karakurkchi, A., Proskurina, V., Sknar, I., Kozlov, Y., Sverdlikovska, O., & Sigunov, O. (2017). Research into influence of the electrolysis modes on the composition of galvanic Fe-Co-Mo coatings. Eastern-European Journal of Enterprise Technologies, 3(12 (87), 9–15. https://doi.org/10.15587/1729-4061.2017.103100

Issue

Section

Materials Science