DOI: https://doi.org/10.15587/1729-4061.2017.103149

Martensite transformations in the surface layer at grinding of parts of hardened steels

Vladimir Lebedev, Natalia Klimenko, Inga Uryadnikova, Tatiana Chumachenko, Alexander Ovcharenko

Abstract


The mechanism of direct and inverse martensitic transformation in the surface layer of a ground part of hardened steel under the influence of the grinding temperature was investigated. It is shown that the reverse martensitic transformation is carried out during grinding according to the martensite-perlite-austenite scheme. The possibility of high-speed tempering of martensite to perlite is shown, under the action of a contact grinding temperature, which, with a further increase in temperature, turns into austenite, forming an extremely harmful defect in the working surface –quenching burn.

In the present work, it is shown that the quenching burn in the form of austenite is happened by the M–P–A diffusion mechanism. This made it possible to obtain graphical and analytical dependencies, using which it is possible to calculate the Ac1 temperature points of the formation of austenite for virtually any steel grade depending on the content of carbon and alloying elements. The latter circumstance makes it possible to create such grinding conditions (the type of abrasive, the characteristics of the wheel, the use of coolant, treatment regime), at which the austenite formation temperature is not attained and the quenching does not happen.

Thus, as a result of the studies, it is possible to determine safe grinding temperatures for steels of different chemical compositions and treatment regimens that do not cause an increase in the grinding temperature above a certain level.


Keywords


martensite transformation; contact temperature; heating rate; martensite tempering; diffusion rate; austenitization temperature

Full Text:

PDF

References


Lebedev, V. G., Klimenko, N. N. (2015). Regularities in the formation of release fires during grinding of bearing steels. Advanced technologies and devices, 6, 35–40.

Lebedev, V. G., Klimenko, N. N., Al-Adzhelat, S. A. (2013). Mechanism of formation of burns during grinding of parts from hardened steels. Scientific notes, 40, 141–144.

Influence of heat generated during grinding. Library of technical literature. Available at: http://delta-grup.ru/bibliot/39/76.htm

Lobodyuk, V. A., Estrin, E. I. (2009). Martensitic transformations. Мoscow: Fizmalit, 352.

Kremen, Z. I., Yuryev, V. G., Baboshkin, A. F. (2015). Technology of grinding in mechanical engineering. Sankt-Peterburg: Polytechnic, 424.

Fedotov, A. K. (2012). Physical Material Science. Vol. 2. Minsk: High school, 446.

Formation of the surface layer during machining. Encyclopedia of Mechanical Engineering XXL. Available at: http://mash-xxl.info/info/704122/

Li, X., Ma, X., Subramanian, S. V., Shang, C., Misra, R. D. K. (2014). Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel. Materials Science and Engineering: A, 616, 141–147. doi: 10.1016/j.msea.2014.07.100

Rajasekhara, S., Ferreira, P. J. (2011). Martensite→austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Materialia, 59 (2), 738–748. doi: 10.1016/j.actamat.2010.10.012

Kaluba, W. J., Kaluba, T., Zielinska-Lipiec, A. (2007). Morphological Evolutions in Steels during Continuous Rapid Heating. Materials Science Forum, 539-543, 4669–4674. doi: 10.4028/www.scientific.net/msf.539-543.4669

Tomota, Y., Gong, W., Harjo, S., Shinozaki, T. (2017). Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction. Scripta Materialia, 133, 79–82. doi: 10.1016/j.scriptamat.2017.02.017

Bao, Y. Z., Adachi, Y., Toomine, Y., Xu, P. G., Suzuki, T., Tomota, Y. (2005). Dynamic recrystallization by rapid heating followed by compression for a 17Ni–0.2C martensite steel. Scripta Materialia, 53 (12), 1471–1476. doi: 10.1016/j.scriptamat.2005.08.017

Blinova, E. N., Glezer, A. M., Libman, M. A., Estrin, E. I. (2014). Structure of the Martensite–Austenite Transition Zone After a Local Pulse Heating of the Martensite. Russian Physics Journal, 57 (4), 429–435. doi: 10.1007/s11182-014-0258-y

Viana, N. F., Nunes, C. dos S., de Abreu, H. F. G. (2013). The variant selection in the transformation from austenite to martensite in samples of maraging-350 steel. Journal of Materials Research and Technology, 2 (4), 298–302. doi: 10.1016/j.jmrt.2013.03.017

Mirzoev, D. A., Mirzoev, A. A., Chirkov, P. V. (2016). Leave martensite in the input of rapid heating. Bulletin of SUSU. Series: Mathematics. Mechanics. Physics, 8 (1), 61–65.

Krainov, A. Yu. (2016). Fundamentals of heat transfer. Heat transfer through a layer of matter. Allowance. Tomsk: SST, 48.

Komarov, O. S., Kovalevsky, V. N., Kerzhentseva, L. F., Makaeva, G. G., Khrenov, O. V., Danilko, B. M., Chigrinov, V. E. (2009). Material Science and Technology of Structural Materials. Minsk: New knowledge, 670.

Biront, V. S. (2007). Theory of heat treatment. Krasnoyarsk, 234.

Lebedev, V., Klimenko, N., Chumachenko, T., Uryadnikova, I., Ovcharenko, A. (2016). Definition of the amount of heat released during metal cutting by abrasive grain and the contact temperature of the ground surface. Eastern-European Journal of Enterprise Technologies, 5 (7 (83)), 43–50. doi: 10.15587/1729-4061.2016.81207


GOST Style Citations


Lebedev, V. G. Regularities in the formation of release fires during grinding of bearing steels [Text] / V. G. Lebedev, N. N. Klimenko // Advanced technologies and devices. – 2015. – Issue 6. – P. 35–40.

Lebedev, V. G. Mechanism of formation of burns during grinding of parts from hardened steels [Text] / V. G. Lebedev, N. N. Klimenko, S. A. Al-Adzhelat // Scientific notes. – 2013. – Issue 40. – P. 141–144.

Influence of heat generated during grinding [Electronic resource]. – Library of technical literature. – Available at: http://delta-grup.ru/bibliot/39/76.htm

Lobodyuk, V. A. Martensitic transformations [Text] / V. A. Lobodyuk, E. I. Estrin. – Мoscow: Fizmalit, 2009. – 352 p.

Kremen, Z. I. Technology of grinding in mechanical engineering [Text] / Z. I. Kremen, V. G. Yuryev, A. F. Baboshkin. – Sankt-Peterburg: Polytechnic, 2015. – 424 p.

Fedotov, A. K. Physical Material Science. Vol. 2 [Text] / A. K. Fedotov. – Minsk: High school, 2012. – 446 p.

Formation of the surface layer during machining [Electronic resource]. – Encyclopedia of Mechanical Engineering XXL. – Available at: http://mash-xxl.info/info/704122/

Li, X. Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel [Text] / X. Li, X. Ma, S. V. Subramanian, C. Shang, R. D. K. Misra // Materials Science and Engineering: A. – 2014. – Vol. 616. – P. 141–147. doi: 10.1016/j.msea.2014.07.100 

Rajasekhara, S. Martensite→austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel [Text] / S. Rajasekhara, P. J. Ferreira // Acta Materialia. – 2011. – Vol. 59, Issue 2. – P. 738–748. doi: 10.1016/j.actamat.2010.10.012 

Kaluba, W. J. Morphological Evolutions in Steels during Continuous Rapid Heating [Text] / W. J. Kaluba, T. Kaluba, A. Zielinska-Lipiec // Materials Science Forum. – 2007. – Vol. 539-543. – P. 4669–4674. doi: 10.4028/www.scientific.net/msf.539-543.4669 

Tomota, Y. Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction [Text] / Y. Tomota, W. Gong, S. Harjo, T. Shinozaki // Scripta Materialia. – 2017. – Vol. 133. – P. 79–82. doi: 10.1016/j.scriptamat.2017.02.017 

Bao, Y. Z. Dynamic recrystallization by rapid heating followed by compression for a 17Ni–0.2C martensite steel [Text] / Y. Z. Bao, Y. Adachi, Y. Toomine, P. G. Xu, T. Suzuki, Y. Tomota // Scripta Materialia. – 2005. – Vol. 53, Issue 12. – P. 1471–1476. doi: 10.1016/j.scriptamat.2005.08.017 

Blinova, E. N. Structure of the Martensite–Austenite Transition Zone After a Local Pulse Heating of the Martensite [Text] / E. N. Blinova, A. M. Glezer, M. A. Libman, E. I. Estrin // Russian Physics Journal. – 2014. – Vol. 57, Issue 4. – P. 429–435. doi: 10.1007/s11182-014-0258-y 

Viana, N. F. The variant selection in the transformation from austenite to martensite in samples of maraging-350 steel [Text] / N. F. Viana, C. dos S. Nunes, H. F. G. de Abreu // Journal of Materials Research and Technology. – 2013. – Vol. 2, Issue 4. – P. 298–302. doi: 10.1016/j.jmrt.2013.03.017 

Mirzoev, D. A. Leave martensite in the input of rapid heating [Text] / D. A. Mirzoev, A. A. Mirzoev, P. V. Chirkov // Bulletin of SUSU. Series: Mathematics. Mechanics. Physics. – 2016. – Vol. 8, Issue 1. – P. 61–65.

Krainov, A. Yu. Fundamentals of heat transfer. Heat transfer through a layer of matter [Text]: textbook / A. Yu. Krainov. – Tomsk: SST, 2016. – 48 p.

Komarov, O. S. Material Science and Technology of Structural Materials [Text] / O. S. Komarov, V. N. Kovalevsky, L. F. Kerzhentseva, G. G. Makaeva, O. V. Khrenov, B. M. Danilko, V. E. Chigrinov. – Minsk: New knowledge, 2009. – 670 p.

Biront, V. S. Theory of heat treatment [Text] / V. S. Biront. – Krasnoyarsk, 2007. – 234 p.

Lebedev, V. Definition of the amount of heat released during metal cutting by abrasive grain and the contact temperature of the ground surface [Text] / V. Lebedev, N. Klimenko, T. Chumachenko, I. Uryadnikova, A. Ovcharenko // Eastern-European Journal of Enterprise Technologies. – 2016. – Vol. 5, Issue 7 (83). – P. 43–50. doi: 10.15587/1729-4061.2016.81207 






Copyright (c) 2017 Vladimir Lebedev, Natalia Klimenko, Inga Uryadnikova, Tatiana Chumachenko, Alexander Ovcharenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061