Application of electromagnetic fields for intensification of heat and mass exchange in combined gas-liquid processes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.103868

Keywords:

intensification of heat and mass exchange processes, magnetic and electric field, cylindrical resonator, induction receiver

Abstract

To date, thermal rectors with submersible combustion devices with efficiency of more than 100 % relative to the lowest heat of combustion are known. This method of heating is more universal and energy efficient due to the absence of heat losses in transportation and maximum utilization of the carrier heat. This opens up broad prospects for the use of these energotechnological facilities in residential gas heating systems.

This work has studied the effect of electromagnetic fields having intensity gradient in the direction of motion of the contacting phases on the process of mass transfer between counter-current-moving gas and liquid phases. It was shown that the optimal method of intensification of heat and mass transfer in the submerged combustion devices is oscillation of the contacting phases under action of an electric spark discharge. Design solutions were proposed for intensifying the heat and mass transfer process and increasing the energy efficiency of operation of thermal reactors with the submersible combustion devices.

To evaluate the effect of magnetic and electric fields upon their application, it was proposed to use the developed vibrofrequency measuring transducer with a cylindrical-type resonator. Application of such control method makes it possible to measure total frequency-modular oscillations of the contacting phases. In this case, there is no need to control characteristics of magnetic and electric fields and assess their individual effects on the intensity of oscillations in the contacting gas-liquid phases.

Author Biographies

Valeriy Nikolsky, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Energetic

Olga Oliynyk, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Computer-integrated Technologies and Metrology

Vadim Yaris, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of chemical enterprises equipment

Irina Reshetnyak, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Energetic

References

  1. Kuzma-Kitcha, Yu. A. (2001). Metody intensifikacii teploobmena. Moscow: Izd-vo MEHI, 112.
  2. Ibragimov, U. H., Shamuratova, S. M., Rahmonov, B. A. (2016). Intensifikaciya teploobmena v kanalah. Molodoy uchenyy, 8, 225–229.
  3. Tovazhnyanskiy, L. L., Anipko, O. B., Malyarenko, V. A., Abramov, Yu. A., Krivcova, V. I. (2002). Osnovy ehnergotekhnologii promyshlennosti. Kharkiv: NTU "HPI", 436.
  4. Nikolsky, V. (2015). Development and study of contact-modular heating system using immersion combustion units. Eastern-European Journal of Enterprise Technologies, 4 (8 (76)), 31–35. doi: 10.15587/1729-4061.2015.47459
  5. Noghrehabadi, A., Ghalambaz, M., Izadpanahi, E., Pourrajab, R. (2014). Effect of magnetic field on the boundary layer flow, heat, and mass transfer of nanofluids over a stretching cylinder. Journal of Heat and Mass Transfer Research, 1 (1), 9–16.
  6. Gusbeth, C., Frey, W., Volkmann, H., Schwartz, T., Bluhm, H. (2009). Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere, 75 (2), 228–233. doi: 10.1016/j.chemosphere.2008.11.066
  7. Miao, X., Timmel, K., Lucas, D., Ren, Z., Eckert, S., Gerbeth, G. (2012). Effect of an Electromagnetic Brake on the Turbulent Melt Flow in a Continuous-Casting Mold. Metallurgical and Materials Transactions B, 43 (4), 954–972. doi: 10.1007/s11663-012-9672-0
  8. Vogt, T., Andruszkiewicz, A., Eckert, S., Eckert, K., Odenbach, S., Gerbeth, G. (2012). Аn experimental study of a bubble-driven liquid metal flow under the influence of a rotating magnetic field. Journal of Iron and Steel Research International, 19, 505–508.
  9. Kang, Y. (2016). Reaction process under the influence of an electromagnetic field. Transactions of Nonferrous Metals Society of China, 26, 1439–1446.
  10. Zhao, L., Liu, Y. (2013). Simulation of Magnetic Resonance for Wireless Power Transfer. Research Journal of Applied Sciences, Engineering and Technology, 5 (05), 1578–1582.
  11. Yan, H., Zhang, W.-M., Jiang, H.-M., Hu, K.-M. (2017). Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation. Sensors, 17 (1), 114. doi: 10.3390/s17010114
  12. Etkin, L. G. (2004). Vibrochastotnye datchiki. Teoriya i praktika. Moscow: MGTU im. N. E. Baumana, 408.
  13. Zhang, W.-M., Meng, G., Wei, K.-X. (2010). Dynamics of Nonlinear Coupled Electrostatic Micromechanical Resonators under Two-Frequency Parametric and External Excitations. Shock and Vibration, 17 (6), 759–770. doi: 10.1155/2010/107404
  14. Oliynyk, O., Taranenko, Y., Shvachka, A., Chorna, O. (2017). Development of auto­oscillating system of vibration frequency sensors with mechanical resonator. Eastern-European Journal of Enterprise Technologies, 1 (2 (85)), 56–60. doi: 10.15587/1729-4061.2017.93335
  15. Nikolsky, V. (2015). The development and study of immersed burning apparatus with multiple phases inversion. Technology audit and production reserves, 4 (1 (24)), 60–64. doi: 10.15587/2312-8372.2015.47791
  16. Agaev, A. A., Ibragimov, V. I., Kurbanaliev, T. S. (1976). Issledovanie absorbcii gazov v ehlektricheskom pole. Uchenye zapiski Azerb. Instituta nefti i himii, 5, 45–50.
  17. Dul'nev, G. N. (2012). Teoriya teplo- i massoobmena. Sankt-Peterburg: NIU ITMO, 195.
  18. Gonoskov, I. A., Vugal'ter, G. A., Mironov, V. A. (2007). Ionizaciya k kvantovannom ehlektromagnitnom pole. Zhurnal ehksperimental'noy i teoreticheskoy fiziki, 132 (6), 1278–1290.
  19. Karasevich, Yu. K. (2009). Kinetika himicheskoy ionizacii v udarnyh volnah. Kinetika i kataliz, 50 (2), 163–169.
  20. Kunova, O. V., Mekhonoshina, M. A. (2014). Vliyanie neravnovesnoy kinetiki na teploperenos i diffuziyu za frontom udarnoy. Fiziko-himicheskaya kinetika v gazovoy dinamike, 15 (1).
  21. Sister, R. G., Martynov, Yu. V. (1998). Principy povysheniya ehffektivnosti teplomassoobmennyh processov. Kaluga: Izd-vo Bochkarevoy N, 507.
  22. Molchanov, A. D., Aksel'rud, A. G., Chernyavskiy, A. I. et. al. (1970). Metod iskrovyh razryadov dlya uskoreniya massoobmena v sisteme tverdoe telo-zhidkost'. IFZH, 18 (2), 293−299.
  23. Prisnyakov, V., Bondarenko, S., Lucenko, V. et. al. (2001). Teplomassoobmen i vibraciya. Odessa: Neptun-Tekhnologiya, 208.

Downloads

Published

2017-06-30

How to Cite

Nikolsky, V., Oliynyk, O., Yaris, V., & Reshetnyak, I. (2017). Application of electromagnetic fields for intensification of heat and mass exchange in combined gas-liquid processes. Eastern-European Journal of Enterprise Technologies, 3(8 (87), 33–39. https://doi.org/10.15587/1729-4061.2017.103868

Issue

Section

Energy-saving technologies and equipment