Investigation of properties of electroconducting nanozones in materials of various nature by the electron paramagnetic resonance method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.104055

Keywords:

nanoparticles, polyaniline, biomineral, enamel, bones, textile material, electron paramagnetic resonance, conductive nanozones

Abstract

This work studied properties of conductive nanozones in dependence on the material nature by the method of electron paramagnetic resonance. Delocalization of charge carriers and strong exchange interactions between paramagnetic centers take place in annealed biominerals, like in polyaniline in a form of emeraldine salt. Since biominerals, unlike polyaniline, can be subjected to a high-temperature anneal, this extends potentials of the EPR method in solving issues associated with the properties of conductive zones in nano-sized polyaniline. It was shown that the EPR signals in the materials under consideration are conditioned by the electrical charge carriers and variations of electrical properties result in variation of the EPR signal characteristics. Consequently, information on the mechanisms of the EPR signal induction in one group of specimens can be used for interpretation of the signal nature and elucidation of properties of local conductive zones in other materials.

It was ascertained that the characteristics of electron paramagnetic resonance of conductive nanozones in biominerals and the textile materials containing nanoparticles of polyaniline are similar. This feature is due to the similarity of paramagnetic charge carriers localized in nano-sized conductive zones of biominerals and organic polymers. Interconnected electron paramagnetic resonance studies of conductive zones in various materials can promote a more successful application of electron paramagnetic resonance in developing nanotechnologies for creation of conductive textile materials containing nanoparticles, especially nanoparticles of polyaniline with a high level of oxidation

Author Biographies

Yana Red'ko, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01100

PhD, Associate Professor

Department of materials, commodity research and examination of textile materials

Aleksandr Brik, M. P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the National Academy of Sciences of Ukraine Akad. Palladina ave., 34, Kyiv, Ukraine, 03680

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of physics and mineral structures biomineralogy

Natalia Suprun, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01100

Doctor of Technical Sciences, Professor, Head of Department

Department of materials, commodity and examination of textile materials

References

  1. Betekhtin, A. G. (2007). Kurs mineralogii. Moscow: KDU, 720.
  2. Bauerlein, E. (Ed.) (2007). Handbook of Biomineralization: Biological Aspects and Structure Formation. WILEY-VCH Verlag GmbH & Co. KGaA, 440. doi: 10.1002/9783527619443
  3. Stejskal, J., Prokes, J., Trchova, M. (2008). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive and Functional Polymers, 68 (9), 1355–1361. doi: 10.1016/j.reactfunctpolym.2008.06.012
  4. Blinova, N. V., Stejskal, J., Trchova, M., Sapurina, I., Ciric-Marjanovic, G. (2009). The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer, 50 (1), 50–56. doi: 10.1016/j.polymer.2008.10.040
  5. Brik, A. B., Radchuk, V. V. (2009). Structure and properties of biominerals localized in human organism. Heokhimiya ta rudoutvorennya, 27, 63–66.
  6. Soni, A., Mishra, D. R., Polymeris, G. S., Bhatt, B. C., Kulkarni, M. S. (2014). OSL and thermally assisted OSL response in dental enamel for its possible application in retrospective dosimetry. Radiation and Environmental Biophysics, 53 (4), 763–774. doi: 10.1007/s00411-014-0554-5
  7. Weil, J. A., Bolton, J. R. (2006). Electron paramagnetic resonance: elementary theory and practical applications. John Wiley & Sons, Inc., Hoboken, New Jersey, 688.
  8. Red'ko, Ya. V., Romankevich, O. V., Shekhunova, S. B. (2011). Vzaimosvyaz' usloviy sinteza nanodispersnogo polianilina s ehlektroprovodnost'yu voloknistogo materiala. Problemy legkoy i tekstil'noy promyshlennosti Ukrainy, 1, 69–73.
  9. Red'ko, Ya. V., Yushchishina, A. N., Romankevich, O. V. (2016). Elektroprovodyashchie voloknistye materialy so sloevoy strukturoy. Elektronnaya obrabotka materialov, 52 (6), 103–108.
  10. Abdallah, M.-N., Eimar, H., Bassett, D. C., Schnabel, M., Ciobanu, O., Nelea, V. et. al. (2016). Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomaterialia, 37, 174–183. doi: 10.1016/j.actbio.2016.04.005
  11. Karray, F., Kassiba, A. (2012). EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline. Physica B: Condensed Matter, 407 (12), 2119–2125. doi: 10.1016/j.physb.2012.02.018
  12. Krinichnyi, V. I., Konkin, A. L., Monkman, A. P. (2012). Electron paramagnetic resonance study of spin centers related to charge transport in metallic polyaniline. Synthetic Metals, 162 (13-14), 1147–1155. doi: 10.1016/j.synthmet.2012.04.030
  13. Bykov, I. P., Brik, A. B., Glinchuk, M. D., Bevz, V. V., Kalinichenko, E. A., Konstantinova, T. E., Danilenko, I. A. (2008). Izmeneniya EPR-harakteristik nanorazmernyh chastic dioksida cirkoniya pri rentgenovskom obluchenii i otzhige v atmosfere vodoroda. Fizika tverdogo tela, 50 (12), 91–99.
  14. Gizdavic-Nikolaidis, M. R., Jevremovic, M. M., Allison, M. C., Stanisavljev, D. R., Bowmaker, G. A., Zujovic, Z. D. (2014). Self-assembly of nanostructures obtained in a microwave-assisted oxidative polymerization of aniline. Express Polymer Letters, 8 (10), 745–755. doi: 10.3144/expresspolymlett.2014.77
  15. Poklonskiy, N. A., Gusakov, G. A., Baev, V. G., Lapchuk, N. M. (2009). Opticheskie i paramagnitnye svoystva obluchennyh ehlektronami i otozhzhennyh kristallov sinteticheskogo almaza. Fizika i tekhnika poluprovodnikov, 43 (5), 595–603.

Downloads

Published

2017-06-30

How to Cite

Red’ko, Y., Brik, A., & Suprun, N. (2017). Investigation of properties of electroconducting nanozones in materials of various nature by the electron paramagnetic resonance method. Eastern-European Journal of Enterprise Technologies, 3(5 (87), 24–30. https://doi.org/10.15587/1729-4061.2017.104055

Issue

Section

Applied physics