Effect of ecologically safe gas-aerosol mixtures on the velocity of explosive combustion of n-heptane

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108427

Keywords:

retarder, inhibitor of combustion, fire-extinguishing aerosol, combined extinguishing, aerosol-forming compound

Abstract

To solve the problem of effective retardation, researchers propose to use mostly gases, powders and their mixtures, as well as, in some cases, khladons and their mixtures with gases. Given the characteristics of known agents of volumetric fire-extinguishing, they share common shortcomings: devices are rather sizeable, gas storage requires a significant number of cylinders, powders need rather big containers, in which they tend to clod. In addition, it takes too long to supply the above-mentioned substances compared with the velocity of explosion front propagation.

Determining an influence of the addition of gas-aerosol mixtures on the velocity of flame propagation throughout stoichiometric n-heptane-air mixture will make it possible to define effective concentrations and ratios of fire-extinguishing aerosol and gases СО2 and N2 on the velocity of flame propagation throughout a combustible homogeneous mixture, which will guide towards a more efficient use of gas-aerosol mixtures in order to prevent explosions and fires.

Present research shows high effectiveness of influence of the addition of a binary mixture of fire-extinguishing aerosol and gases СО2 and N2 on a decrease in velocity of flame of the homogeneous heptane-air mixture. It was experimentally found that the influence of binary mixtures on the stoichiometric n-heptane-air mixture decreases the flame propagation velocity by up to 6.5 times, compared with the original velocity of flame propagation throughout the stoichiometric mixture. Thus, even small addition of binary gas-aerosol mixtures to the homogeneous combustible systems decreases explosion power and prevents the occurrence of detonation in them. Fire-extinguishing concentrations of aerosol and gases in this case decreases considerably due to synergy between them.

Determining the effect of binary gas-air mixtures on the velocity of flame propagation throughout homogeneous combustible mixtures allows us to define conditions for effective anti-explosive and fire-retardant protection of sites with the presence of flammable, combustible and explosive media and substances. 

Author Biographies

Volodymyr Balanyuk, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79000

PhD, Associate Professor, Colonel of service of civil protection

Department of postgraduate studies and doctoral studies

Vasily Kovalishin, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79000

Doctor of Technical Sciences, Professor, Head of Department

Department of fire tactics and rescue operations

Nazariy Kozyar, Main Control service emergencies Ukraine in Kyiv Volodymyrska str., 13, Kyiv, Ukraine, 01601

PhD, Deputy Chief, Colonel of the Civil Protection Service

References

  1. Linteris, G. T. (2009). Clean Agent Suppression of Energized Electrical Equipment Fires. Fire Technology, 47 (1), 1–68. doi: 10.1007/s10694-009-0109-5
  2. Su, J. Z., Kim, A. K., Crampton, G. P., Liu, Z. (2001). Fire Suppression with Inert Gas Agents. Journal of Fire Protection Engineering, 11 (2), 72–87. doi: 10.1106/x21v-yqku-pmkp-xgtp
  3. Senecal, J. A. (2005). Flame extinguishing in the cup-burner by inert gases. Fire Safety Journal, 40 (6), 579–591. doi: 10.1016/j.firesaf.2005.05.008
  4. Balanyuk, V., Kozyar, N., Garasimyuk, O., Lozinskiy, A. (2016). The influence of CO2 additives on fire extinguishing efficiency of binary aerosol-gas mixture. Pozhezhna Bezpeka, 28, 6–12.
  5. Moore, T. A., Yamada, N. (1998). Nitrogen gas as a halon replacement. Halon Options Technical Working Conference, 330–338.
  6. Montreal Protocol on Substances that Deplete the Ozone Layer. 1998 Assessment Report of the Technology and Economic Assessment Panel. Available at: http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/-Technology%20and%20economic%20assessment%20panel-19981871.pdf
  7. United Nations Environment Programme (2010). Ozone Secretariat. Scientific Assessment of Ozone Depletion.
  8. Semenov, N. N. (1940). Teplovaya teoriya goreniya i zryivov. Uspekhi Fizicheskih Nauk, 23 (3), 251–292. doi: 10.3367/ufnr.0023.194003b.0251
  9. Balanyuk, V., Grimalyuk, B. (2004). Doslidzhennya vplivu Inertnih gazovih rozrizhuvachiv na efektivnist vognegasnih aerozoliv. Pozhezhna Bezpeka, 5, 8–12.
  10. Balanyuk, V., Zhurbinskiy, A. (2013). Phlegmatisation of flammable gas mixtures by aerosol sprays. BiTP, 32 (4), 53–58.
  11. Filipczak, R. A. (1993). Relative Fxtinguishment Fffectiveness and Agent Decomposition products of Halon Alternative Agents. Halon Alternatives Technical Working Conference 1993, 149–159.
  12. Ewing, C. T., Faith, F. R., Romans, J. B., Hughes, J. T., Carhart, H. W. (1992). Flame Extinguishment Properties of Dry Chemicals: Extinction Weights for Small Diffusion Pan Fires and Additional Evidence for Flame Extinguishment by Thermal Mechanisms. Journal of Fire Protection Engineering, 4 (2), 35–51. doi: 10.1177/104239159200400201
  13. Dewitte, M., Vrebosch, J., van Tiggelen, A. (1964). Inhibition and extinction of premixed flames by dust particles. Combustion and Flame, 8 (4), 257–266. doi: 10.1016/0010-2180(64)90079-3
  14. Mchale, E. T. (1975). Flame inhibition by potassium compounds. Combustion and Flame, 24, 277–279. doi: 10.1016/0010-2180(75)90159-5
  15. Mitani, T., Nhoka, T. (1982). Comparison of experiments and theory on heterogeneous flame suppressants. Symposium (International) on Combustion, 19 (1), 869–875. doi: 10.1016/s0082-0784(82)80262-2
  16. Yongfeng, Z., Xiang, J., Guangxuan, L., Ni, X. (2007). Experimental Study of the Fire-extinguishing Effectiveness of 1-Bromo- 3,3,3-Trifluoropropene/Nitrogen Mixtures. Journal of Fire Sciences, 25 (2), 177–187. doi: 10.1177/0734904107067914
  17. Lott, J. L., Christian, S. D., Sliepcevich, C. M., Tucker, E. E. (1996). Synergism between chemical and physical fire-suppressant agents. Fire Technology, 32 (3), 260–271. doi: 10.1007/bf01040218
  18. Saito, N., Saso, Y., Ogawa, Y., Otsu, Y., Kikui, H. (1997). Fire Extinguishing Effect Of Mixed Agents Of Halon 1301 And Inert Gases. Fire Safety Science, 5, 901–910. doi: 10.3801/iafss.fss.5-901
  19. Balanyuk, V. M. (2015). The effectiveness of open space fire extinguishing with flammable liquid fighting aerosols. Eastern-European Journal of Enterprise Technologies, 5 (10 (77)), 4–11. doi: 10.15587/1729-4061.2015.51399
  20. Smith, F. A., Kimmel, E. C., English, J. H., Carpenter, R. L. (1995). The assessment of toxicity after exposure to a pyrotechnically generated aerosole. HOTWC, 521–532.
  21. Tischenko, A. M. (1999). Kombinirovannoe pozharotushenie inertnyimi gazami s odnovremennyim ingibirovaniem ochagov goreniya poroshkovyimi smesyami. Problemy pozharnoi bezopasnosti, 6, 159–162.
  22. Byikov, S. A., Otkidach, N. Ya., Tischenko, A. M. (2003). Eksperimentalnoe obosnovanie kombinirovannogo primeneniya azota s ognetushaschimi poroshkami dlya protivopozharnoy zaschityi ob'ektov. Problemy pozharnoi bezopasnosti, 14, 55–59.
  23. Blanc, M. V., Guest, P. G., von Elbe, G., Lewis, B. (1947). Ignition of Explosive Gas Mixtures by Electric Sparks. I. Minimum Ignition Energies and Quenching Distances of Mixtures of Methane, Oxygen, and Inert Gases. The Journal of Chemical Physics, 15 (11), 798–802. doi: 10.1063/1.1746337
  24. Chen, Z., Wei, L., Gu, X., Huang, Z., Yuan, T., Li, Y., Tian, Z. (2010). Study of Low-Pressure Premixed Dimethyl Ether/Hydrogen/Oxygen/Argon Laminar Flames with Photoionization Mass Spectrometry. Energy & Fuels, 24 (3), 1628–1635. doi: 10.1021/ef901314r
  25. Qiao, L., Gan, Y., Nishiie, T., Dahm, W. J. A., Oran, E. S. (2010). Extinction of premixed methane/air flames in microgravity by diluents: Effects of radiation and Lewis number. Combustion and Flame, 157 (8), 1446–1455. doi: 10.1016/j.combustflame.2010.04.004
  26. Balanyuk, V. M. (2016). Specific Nature of Phlegmatizing Air-Heptan Mixture using Aerosol and Nitrogen Binary Mixture. BiTP, 44 (4), 139–149.
  27. Nikon 1 J4. Available at: http://imaging.nikon.com/lineup/acil/bodies/j4/spec.htm
  28. Balanyuk, V., Kozyar, N., Garasyumyk, O. (2016). Study of fire–extinguishing efficiency of environmentally friendly binary aerosol-nitrogen mixtures. Eastern-European Journal of Enterprise Technologies, 3 (10 (81)), 4–12. doi: 10.15587/1729-4061.2016.72399
  29. Agafonov, V. V., Kopylov, N. P. (1997). Aerosol Extinguishing System: Elements and Characteristics, Design, Erection and Operation. VNIIPO, 232.
  30. Balanyuk, V. M., Kozyar, N. M., Garasim’yuk, O. I. (2016). The usage of gas and aerosol powder extinguishing mixtures for protection of incendiary mixtures. ScienceRise, 5 (2 (22)), 10–14. doi: 10.15587/2313-8416.2016.69333
  31. Balanyuk, V. M., Garasimyuk, O. I. (2015). Kombinovane aerozolno-poroshkove pozhezhogasinnya. Pozhezhna bezpeka, 26, 7–12.

Downloads

Published

2017-08-22

How to Cite

Balanyuk, V., Kovalishin, V., & Kozyar, N. (2017). Effect of ecologically safe gas-aerosol mixtures on the velocity of explosive combustion of n-heptane. Eastern-European Journal of Enterprise Technologies, 4(10 (88), 12–19. https://doi.org/10.15587/1729-4061.2017.108427