Research into kinetic patterns of chemical metallization of powder­like polyvinylchloride

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108462

Keywords:

metallic polymeric composites, functional composites, polyvinylchloride, chemical reduction, reaction rate, metallic fillers

Abstract

We present kinetic patterns of metallization of zinc-activated polyvinylchloride in the solution of chemical copper plating. The influence was studied of pH of the medium and the amount of metal of the activator on the copper deposition rate on the activated polymeric surface. It was established that in the case of activation of the polymeric surface with zinc, the solution undergoes two competing reactions of copper reduction. By using a volumetric method, we determined that pH of the medium exerts a decisive impact on the reduction mechanism of copper. It is proved that with the growth of pH in the solutions of chemical copper plating and the amount of metal-activator, the amount of copper reduced as a result of exchange reaction with zinc increases. The optimal pH of the solutions for the course of reaction of copper reduction by formaldehyde is 12. The obtained samples of metallized powder-like polyvinylchloride contain a significant quantity of copper on the surface and could be used to create metal-filled composites.

The research conducted allows us to establish optimal conditions and effectively influence the copper reduction process on the activated polymeric surface in the solutions of chemical metallization. By changing the speed and efficiency of copper deposition on the polymeric surface, it is possible to control the content of metal in polymeric composites that are obtained from such materials, and thus control their properties

Author Biographies

Volodymyr Moravskyi, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Chemical Technology of Plastics Processing

Iryna Dziaman, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Junior Research

Department of Chemical Technology of Plastics Processing

Sofiіa Suberliak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Engineer

Department of Chemical Technology of Plastics Processing

Marta Kuznetsova, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Thermal Engineering and Thermal Power Stations

Tatiana Tsimbalista, State higher educational institution "Кalush Polytechnic College" B. Khmelnicky str., 2, Kalush, Ukraine, 77301

Specialist of the highest category, Chairman of the cyclic Commission of chemical technology and engineering

Ludmila Dulebova, Technical University of Kosice Letniaya str., 9, Kosice, Slovak Republic, 04200

PhD, Associate professor

Department of Automobile Production

References

  1. Lee, S. H., Yu, S., Shahzad, F., Hong, J. P., Kim, W. N., Park, C. et. al. (2017). Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Composites Science and Technology, 144, 57–62. doi: 10.1016/j.compscitech.2017.03.016
  2. Moravskyi, V. S., Tymkiv, I. A., Bodnarchuk, P. T. (2016). Metalizatsiya polivinilkhlorydnoho plastykatu khimichnym vidnovlennyam v rozchynakh. Visnyk Natsionalnoho universytetu “Lʹivska politekhnika”: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya”, 841, 405–409.
  3. Eichner, E., Salikov, V., Bassen, P., Heinrich, S., Schneider, G. A. (2017). Using dilute spouting for fabrication of highly filled metal-polymer composite materials. Powder Technology, 316, 426–433. doi: 10.1016/j.powtec.2016.12.028
  4. Park, H. J., Badakhsh, A., Im, I. T., Kim, M.-S., Park, C. W. (2016). Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Applied Thermal Engineering, 107, 907–917. doi: 10.1016/j.applthermaleng.2016.07.053
  5. Panwar, V., Mehra, R. M. (2008). Analysis of electrical, dielectric, and electromagnetic interference shielding behavior of graphite filled high density polyethylene composites. Polymer Engineering & Science, 48 (11), 2178–2187. doi: 10.1002/pen.21163
  6. Mansour, S. A., Al-ghoury M. E., Shalaan, E., El Eraki, M. H. I., Abdel-Bary, E. M. (2011). Dielectric dispersion and AC conductivity of acrylonitrile butadiene rubber-poly(vinyl chloride)/graphite composite. Journal of Applied Polymer Science, 122 (2), 1226–1235. doi: 10.1002/app.34240
  7. Mansour, S. A., Hussein, M., Moharram, A. H. (2014). Thermoelectric Power Properties of Graphite-Loaded Nitrile Rubber/Poly(vinyl chloride) Blends Above the Percolation Threshold. Advances in Polymer Technology, 33 (S1), 21439–21448. doi: 10.1002/adv.21439
  8. Klason, C., Mcqueen, D. H., Kubát, J. (1996). Electrical properties of filled polymers and some examples of their applications. Macromolecular Symposia, 108 (1), 247–260. doi: 10.1002/masy.19961080120
  9. Khazai, B., Nichols, G. M. (1999). Patent US5902518 A, МПК H01B 1/06 Self-regulating polymer composite heater. Watlow Missouri, Inc., Northwestern University. US 08/902,122; declared: 29.07.1997; published: 11.05.1999.
  10. Arranz-Andrés, J., Pérez, E., Cerrada, M. L. (2012). Hybrids based on poly(vinylidene fluoride) and Cu nanoparticles: Characterization and EMI shielding. European Polymer Journal, 48 (7), 1160–1168. doi: 10.1016/j.eurpolymj.2012.04.006
  11. Arranz-Andrés, J., Pulido-González, N., Fonseca, C., Pérez, E., Cerrada, M. L. (2013). Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability. Materials Chemistry and Physics, 142 (2-3), 469–478. doi: 10.1016/j.matchemphys.2013.06.038
  12. Kim, H.-R., Fujimori, K., Kim, B.-S., Kim, I.-S. (2012). Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Composites Science and Technology, 72 (11), 1233–1239. doi: 10.1016/j.compscitech.2012.04.009
  13. Nurazreena, Hussain, L. B., Ismail, H., Mariatti, M. (2006). Metal Filled High Density Polyethylene Composites – Electrical and Tensile Properties. Journal of Thermoplastic Composite Materials, 19 (4), 413–425. doi: 10.1177/0892705706062197
  14. Sancaktar, E., Bai, L. (2011). Electrically Conductive Epoxy Adhesives. Polymers, 3 (4), 427–466. doi: 10.3390/polym3010427
  15. Bloor, D., Donnelly, K., Hands, P. J., Laughlin, P., Lussey, D. (2005). A metal–polymer composite with unusual properties. Journal of Physics D: Applied Physics, 38 (16), 2851–2860. doi: 10.1088/0022-3727/38/16/018
  16. Krupa, I., Cecen, V., Boudenne, A., Prokeš, J., Novák, I. (2013). The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Materials & Design, 51, 620–628. doi: 10.1016/j.matdes.2013.03.067
  17. Nikzad, M. (2007). Thermo-Mechanical Properties of a Metal-filled Polymer Composite for Fused Deposition Modelling Application. 5th Australasian Congress on Applied Mechanics, ACAM 2007.
  18. Kurt, E., Ozçelik, C. Y., Yetgin, S., Omurlu, F. О., Balkose, D. (2013). Preparation and Characterization of Flexible Polyvinylchloride-Copper Composite Films. Polymers and Polymer Composites, 21, 139–143.
  19. Iqbal, M., Mamoor, G., Bashir, T., Irfan, M., Manzoor, M. (2011). A Study of Polystyrene-Metal Powder Conductive Composites. Journal of Chemical Engineering, 25, 61–64. doi: 10.3329/jce.v25i0.7240
  20. Burmistrov, I., Gorshkov, N., Ilinykh, I., Muratov, D., Kolesnikov, E., Yakovlev, E. et. al. (2017). Mechanical and electrical properties of ethylene-1-octene and polypropylene composites filled with carbon nanotubes. Composites Science and Technology, 147, 71–77. doi: 10.1016/j.compscitech.2017.05.005
  21. Zakiyan, S. E., Azizi, H., Ghasemi, I. (2017). Influence of chain mobility on rheological, dielectric and electromagnetic interference shielding properties of poly methyl-methacrylate composites filled with graphene and carbon nanotube. Composites Science and Technology, 142, 10–19. doi: 10.1016/j.compscitech.2017.01.025
  22. Grytsenko, O. M., Suberlyak, O. V., Moravskyі, V. S., Hayduk, A. V. (2016). Investigation of nickel chemical precipitation kinetics. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 26–31. doi: 10.15587/1729-4061.2016.59506
  23. Kim, H.-R., Fujimori, K., Kim, B.-S., Kim, I.-S. (2012). Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Composites Science and Technology, 72 (11), 1233–1239. doi: 10.1016/j.compscitech.2012.04.009
  24. Sonawane, D., Oberoi, S., Kumar, P. (2016). Effect of aspect ratio of test specimens on quasistatic compression loading and stress-relaxation of PDMS and a Cu-filled-PDMS composite. Polymer Testing, 55, 173–183. doi: 10.1016/j.polymertesting.2016.08.022
  25. Oberoi, S., Sonawane, D., Kumar, P. (2016). Effect of strain rate and filler size on mechanical behavior of a Cu filled elastomer based composite. Composites Science and Technology, 127, 185–192. doi: 10.1016/j.compscitech.2016.03.006
  26. Rueda, M. M., Auscher, M.-C., Fulchiron, R., Périé, T., Martin, G., Sonntag, P., Cassagnau, P. (2017). Rheology and applications of highly filled polymers: A review of current understanding. Progress in Polymer Science, 66, 22–53. doi: 10.1016/j.progpolymsci.2016.12.007
  27. Baboo, M., Sharma, K., Saxena, N. S. (2012). Mechanical and thermal properties of composites of cis and trans-polyisoprene blends filled with Al-powder. Powder Technology, 231, 54–62. doi: 10.1016/j.powtec.2012.07.042
  28. Rusu, M., Sofian, N., Rusu, D. (2001). Mechanical and thermal properties of zinc powder filled high density polyethylene composites. Polymer Testing, 20 (4), 409–417. doi: 10.1016/s0142-9418(00)00051-9
  29. Shalkauskas, M., Vashkyalys, A. (1985). Khymycheskaya metallyzatsyya plastmass. Lenigrad: Khymyya, 144.

Downloads

Published

2017-08-29

How to Cite

Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, M., Tsimbalista, T., & Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder­like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 50–57. https://doi.org/10.15587/1729-4061.2017.108462

Issue

Section

Materials Science