Research into specifics of recycling the scale of nickel­molybdenum containing precision alloys by the method of hydrogen reduction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109738

Keywords:

scale, precision alloy, hydrogen reduction, phase analysis, microstructure, resource saving, alloying

Abstract

We explored kinetic patterns of hydrogen reduction of the scale of a nickel­molybdenum containing precision alloy at a temperature of 673‒1573 K over the interval from 0 to 360 min. The largest degree of reduction is achieved after thermal treatment at 1273 K –
99 %. This is due to the intensification of reduction processes and a sufficient level of porosity, which enables a satisfactory gas exchange. It was discovered that the starting scale consists mainly of Fe2O3 and Fe3O4 with the atoms substituting their alloying elements, as well as MoO3. The target product of metallization had a sponge microstructure and consisted of γ­Fe, FeNi, the phase of Mo, and the remaining non­reduced Fe3O4 and FeO.

The resulting phases do not demonstrate a noticeable inclination to sublimation. This ensures a reduction in the losses of alloying elements when obtaining and using the highly­alloyed metallized scale, which was confirmed by the experimental­ industrial tests. At the same time, disposal of industrial wastes provides a reduction in the technogenic load on industrial regions and improves ecological situation. 

Author Biographies

Stanislav Hryhoriev, Zaporizhzhia National University Zhukovskoho str., 66, Zaporizhzhia, Ukraine, 69600

Doctor of Technical Sciences, Professor

Department of business administration and international management

Artem Petryshchev, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Labour and Environment Protection

Andriy Kovalyov

Assistant

Ganna Shyshkanova, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Applied Mathematics 

Mykhail Yamshinskij, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of foundry of ferrous and nonferrous metals

Grigoriy Fedorov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of foundry of ferrous and nonferrous metals

Yaroslav Chumachenko, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Mathematical methods in engineering

Olena Mizerna, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Assistant

Department of Applied Mathematics 

Yevgen Goliev, Zaporizhzhia State Engineer Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69006

Postgraduate student

Department of metallurgy

Oksana Shcherbyna, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Assistant

Department of applied mathematics

References

  1. Yuzov, O. V., Sedyh, A. M. (2017). Tendencii razvitiya mirovogo rynka stali. Stal', 2, 60–67.
  2. Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: 10.3103/s0967091214050118
  3. Mechachti, S, Benchiheub, O., Serrai, S., Shalabi, M. (2013). Preparation of iron Powders by Reduction of Rolling Mill Scale. International Journal of Scientific & Engineering Research, 4, 5, 1467–1472.
  4. Zhu, H., Li, Z., Yang, H., Luo, L. (2013). Carbothermic Reduction of MoO3 for Direct Alloying Process. Journal of Iron and Steel Research, International, 20 (10), 51–56. doi: 10.1016/s1006-706x(13)60176-4
  5. Molotilov, B. V., Galkin, M. P., Kornienkov, B. A. (2016). Design of new precision alloys. Steel in Translation, 46 (9), 675–678. doi: 10.3103/s0967091216090060
  6. Saunin, V. N., Telegin, S. V. (2014). Issledovaniya ferromagnitnyh poroshkov i pokrytiy na ih osnove. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva, 1, 72–75.
  7. Dang, J., Zhang, G.-H., Chou, K.-C., Reddy, R. G., He, Y., Sun, Y. (2013). Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. International Journal of Refractory Metals and Hard Materials, 41, 216–223. doi: 10.1016/j.ijrmhm.2013.04.002
  8. Wang, L., Zhang, G.-H., Chou, K.-C. (2016). Synthesis of nanocrystalline molybdenum powder by hydrogen reduction of industrial grade MoO3. International Journal of Refractory Metals and Hard Materials, 59, 100–104. doi: 10.1016/j.ijrmhm.2016.06.001
  9. Badenikov, A. V., Badenikov, V. Ya., Bal'chugov, A. V. (2015). Kinetika plazmennogo vosstanovleniya trekhokisi molibdena. Vestnik Angarskogo gosudarstvennogo tekhnicheskogo universiteta, 9, 8–10.
  10. Manukyan, K. V., Avetisyan, A. G., Shuck, C. E., Chatilyan, H. A., Rouvimov, S., Kharatyan, S. L., Mukasyan, A. S. (2015). Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations. The Journal of Physical Chemistry C, 119 (28), 16131–16138. doi: 10.1021/acs.jpcc.5b04313
  11. Vnukov, A. A., Golovachev, A. N., Belaya, A. V. (2016). Influence of rolling scale processing parameters on morphology of reduced iron powder particles. Technology audit and production reserves, 6 (1 (32)), 4–8. doi: 10.15587/2312-8372.2016.85866

Downloads

Published

2017-10-31

How to Cite

Hryhoriev, S., Petryshchev, A., Kovalyov, A., Shyshkanova, G., Yamshinskij, M., Fedorov, G., Chumachenko, Y., Mizerna, O., Goliev, Y., & Shcherbyna, O. (2017). Research into specifics of recycling the scale of nickel­molybdenum containing precision alloys by the method of hydrogen reduction. Eastern-European Journal of Enterprise Technologies, 5(12 (89), 34–38. https://doi.org/10.15587/1729-4061.2017.109738

Issue

Section

Materials Science