Segmentation of the images obtained from onboard optoelectronic surveillance systems by the evolutionary method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109904

Keywords:

image segmentation, evolutionary method, onboard system, optoelectronic surveillance, object of interest

Abstract

The essence of the simpler evolutionary method of image segmentation which relates to ant methods was set forth. The image segmentation process was presented as a set of areas in which agents (ants) move. Probability of transition from one turning point of the route to another was determined taking into account attractiveness of the route and concentration of pheromones on it. A timely convergence of decisions (choice of the same route by the agents) is processed by the use of feedback, i.e. evaporation of pheromones. The parameters setting pheromone weight and attractiveness of the area were calculated. The routes which are the most attractive according to the selected criteria (with the maximum concentration of pheromone) were determined. Unattractive routes disappear with a gradual "drying" of pheromone on such routes. When checking function ability of the simpler evolutionary segmentation method, it was found that implementations of this method with obviously unsuccessful results are possible.

Essence of the advanced evolutionary method of image segmentation as improvement of the simpler evolutionary method was outlined. In the improved method, only the best agents increase the level of pheromone on their routes. The level of pheromone on the routes is limited. An expression has been obtained for renewal of pheromone levels. The best route may be either the iteration best or the best-so-far (found since the start of the method) route.

In contrast to the simpler evolutionary method, an optimal route of agent movement was found during segmentation of images in all implementations with the use of the advanced evolutionary method.

Experimental studies of segmentation of the images obtained from the onboard systems of optoelectronic surveillance using the evolutionary method have been carried out. As an example, possible objects of interest were defined in the segmented image and it was established that the outlined contours of the main objects of interest coincide with the boundaries of the objects in the original image. Presence of a large number of outlined contours of small-sized objects in the segmented image was pointed out and an example of such area was given. Visual estimation of efficiency of application of the evolutionary method was made

Author Biographies

Igor Ruban, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Electronic Computers

Hennadii Khudov, Kharkiv national university of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor, Head of Department

Department of Radar Troops Tactic 

Vladyslav Khudov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Postgraduate student

Department of Information Technology Security

Irina Khizhnyak, Kharkiv national university of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Head of group Educational-Laboratory complex

Department of aviation equipment and complexes of air reconnaissance

Oleksandr Makoveichuk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Information Technology Publishing

References

  1. Lindley-French, J. (2015). NATO and New Ways of Warfare: Defeating Hybrid Threats. Rome: NATO Defense College, 12.
  2. Bayuk, J. L., Healey, J., Ronmeyer, P., Sachs, M. H., Schmidt, J., Weiss, J. (2017). Cyber security policy guidebook. New Jersey: Wiley, 270.
  3. Wallace, J. L., Hartley, R. G., Bowman, G., Coburn, A., Ruffle, S. (2013). Geopolitical conflict. Cambridge: University of Cambridge, 50.
  4. Demidov, B. A., Korostelev, O. P. (2016). Metodicheskie osnovy sistemnyh issledovaniy i resheniya problem tekhnicheskogo osnashcheniya vooruzhennyh sil gosudarstva. Kn. 1. Kyiv: Izdatel'skiy dom «Stilos», 655.
  5. Grometstein, A. A. (2011). Technology in Support of National Security. Lexington: Lincoln Laboratory Massachusetts Institute of Technology, 596.
  6. Stephen, M. (2015). Dayspring Toward a theory of Hybrid Warfare: the Russian conduct of war during peace. Denver: Regis University, 222.
  7. Kim, N. V., Krylov, I. G. (2014). Algoritm upravleniya gruppoy bespilotnyh letatel'nyh apparatov. Robototekhnika i tekhnicheskaya kibernetika, 4, 40–43.
  8. Demidov, B. A., Korostelev, O. P. (2016). Metodicheskie osnovy sistemnyh issledovaniy i resheniya problem tekhnicheskogo osnashcheniya vooruzhennyh sil gosudarstva. Kn. 2. Kyiv: Izdatel'skiy dom «Stilos», 640.
  9. Veremeenko, K. K., Zheltov, S. Yu., Kim, N. V., Kolorez, D. A., Sypalo, K. I. et. al.; Krasil'shchikov, M. N., Sebryakov, G. G. (Eds.) (2009). Sovremennye informacionnye tekhnologii v zadachah navigacii i navedeniya bespilotnyh manevrennyh apparatov. Moscow: Fizmatlit, 432.
  10. Men'shakov, Yu. K. (2013). Tekhnicheskaya razvedka iz kosmosa. Moscow: Academia, 656.
  11. Wang, Y. (2014). A New Image Threshold Segmentation based on Fuzzy Entropy and Improved Intelligent Optimization Algorithm. Journal of Multimedia, 9 (4). doi: 10.4304/jmm.9.4.499-505
  12. Zhu, S., Zhao, J., Guo, L. (2014). Rival Penalized Image Segmentation. Journal of Multimedia, 9 (5). doi: 10.4304/jmm.9.5.736-745
  13. Faroogue, M. Y., Raeen, M. S. (2014). Latest trends on image segmentation schemes. International journal of advanced research in computer science and software engineering, 4 (10), 792–797.
  14. Choudhary, R., Gupta, R. (2017). Recent Trends and Techniques in Image Enhancement using Differential Evolution- A Survey. International Journal of Advanced Research in Computer Science and Software Engineering, 7 (4), 106–112. doi: 10.23956/ijarcsse/v7i4/0108
  15. Samoilenko, O. V., Ponomarenko, S. O., Ladyk, M. O. (2016). Perspektyvy rozvytku nazemnykh kompleksiv pryimannia ta tsyfrovoi obrobky materialiv povitrianoi rozvidky Zbroinykh Syl Ukrainy. Zbirnyk naukovykh prats Derzhavnoho naukovo-doslidnoho instytutu aviatsyi, 12 (19), 115–120.
  16. Guk, A. P. (2015). Avtomatizaciya deshifrirovaniya snimkov. Teoreticheskie aspekty statisticheskogo raspoznavaniya obrazov. Izvestiya vysshih uchebnyh zavedeniy, 65, 166–169.
  17. NATO Intelligence, Surveillance, and Reconnaissance (ISR) Interoperability Architecture (2005). North Atlantic Treaty Organization. Available at: http://www.avcs-au.com/library/files/planning/AEDP-02v4.pdf
  18. IEEE Xplore Digital Library. Available at: http://ieeexplore.ieee.org/Xplore/home.jsp
  19. Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13 (1), 146. doi: 10.1117/1.1631315
  20. Cheng, H. D., Chen, Y.-H., Sun, Y. (1999). A novel fuzzy entropy approach to image enhancement and thresholding. Signal Processing, 75 (3), 277–301. doi: 10.1016/s0165-1684(98)00239-4
  21. Liu, J. Z., Li, W. Q. (1993). The automatic thresholding of gray-level pictures via two-dimensional Otsu method. Acta Automatica Sin, 19, 101–105.
  22. Chang, C.-I., Chen, K., Wang, J., Althouse, M. L. G. (1994). A relative entropy-based approach to image thresholding. Pattern Recognition, 27 (9), 1275–1289. doi: 10.1016/0031-3203(94)90011-6
  23. Kittler, J., Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition, 19 (1), 41–47. doi: 10.1016/0031-3203(86)90030-0
  24. Kittler, J., Illingworth, J. (1985). On threshold selection using clustering criteria. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15 (5), 652–655. doi: 10.1109/tsmc.1985.6313443
  25. Jawahar, C. V., Biswas, P. K., Ray, A. K. (1997). Investigations on fuzzy thresholding based on fuzzy clustering. Pattern Recognition, 30 (10), 1605–1613. doi: 10.1016/s0031-3203(97)00004-6
  26. Tsai, C.-M., Lee, H.-J. (2002). Binarization of color document images via luminance and saturation color features. IEEE Transactions on Image Processing, 11 (4), 434–451. doi: 10.1109/tip.2002.999677
  27. O’Gorman, L. (1994). Binarization and Multithresholding of Document Images Using Connectivity. Graphical Models and Image Processing, 56 (6), 494–506. doi: 10.1006/gmip.1994.1045
  28. Ahuja, N., Rosenfeld, A. (1975). A note on the use of second-order gray-level statistics for threshold selection. IEEE Transactions on Systems, Man and Cybernetics, 5, 383–388.
  29. Sauvola, J., Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33 (2), 225–236. doi: 10.1016/s0031-3203(99)00055-2
  30. Shen, D., Ip, H. H. S. (1997). A Hopfield neural network for adaptive image segmentation: An active surface paradigm. Pattern Recognition Letters, 18 (1), 37–48. doi: 10.1016/s0167-8655(96)00117-1
  31. Pal, S. K., Rosenfeld, A. (1988). Image enhancement and thresholding by optimization of fuzzy compactness. Pattern Recognition Letters, 7 (2), 77–86. doi: 10.1016/0167-8655(88)90122-5
  32. Abutaleb, A. S. (1989). Automatic thresholding of gray-level pictures using two-dimensional entropy. Computer Vision, Graphics, and Image Processing, 47 (1), 22–32. doi: 10.1016/0734-189x(89)90051-0
  33. Binarizaciya izobrazheniy: algoritm Bredli. Habrahabr. Available at: https://habrahabr.ru/post/278435
  34. Zuev, V. E. (1970). Rasprostranenie vidimyh i infrakrasnyh voln v atmosfere. Moscow: Sovetskoe radio, 496.
  35. Zuev, V. E., Kabanov, M. V. (1977). Perenos opticheskih signalov v zemnoy atmosfere (v usloviyah pomekh). Moscow: Sovetskoe radio, 368.
  36. Badiger, S., Akkasaligar, P. T. (2014). Medical imaging techniques in clinical medicine. International journal of medical, health, pharmaceutical and biomedical engineering, 8 (11), 797–800.
  37. Mahno, T. A. (2015). Avtomatizirovannaya sistema obrabotki ul'trazvukovyh izobrazheniy sonnyh arteriy na osnove evolyucionnyh algoritmov. Elektrotekhnicheskie i komp'yuternye sistemy, 18 (94), 92–99.
  38. Mahno, T. A. (2015). Parametrizaciya skhem obrabotki UZI sonnyh arteriy pri pomoshchi evolyucionnyh algoritmov. Informacionno-upravlyayushchie sistemy na zheleznodorozhnom transporte, 5 (114), 57–60.
  39. Bilynskyi, Y. Y., Ratushnyi, P. M. (2012). Metod vydilennia konturu na slabokontransnykh rozmytykh zobrazhenniakh. Visnyk Vinnytskoho politekhnichnoho instytutu, 3, 164–169.
  40. Skobcov, Yu. A., El'-Hatib, S. A., El'-Hatib, A. I. (2013). Segmentaciya izobrazheniy metodom murav'inyh koloniy. Vestnik Hersonskogo Nacional'nogo Tekhnicheskogo Universiteta, 1 (46), 204–211.
  41. El-Baz, A., Jiang, X., Jasjit, S. (2016). Biomedical image segmentation: advances and trends. US: CRC Press. doi: 10.4324/9781315372273
  42. Dorigo, M., Maniezzo, V., Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26 (1), 29–41. doi: 10.1109/3477.484436
  43. Dorigo, M. (1992). Optimization, learning and natural algorithms. Politecnico di Milano.
  44. Dorigo, M., Stzle, T. (2004). Ant Colony Optimization. Cambridge: MIT Press, 35.
  45. El-Khatib, S. A., Skobtsov, Y. A. (2015). The computer system of medical image segmentation by ant colony optimization. Radio Electronics, Computer Science, Control, 3, 49–57. doi: 10.15588/1607-3274-2015-3-6
  46. Shtovba, S. D. (2003). Murav'inye algoritmy. Exponenta Pro. Matematika v prilozheniyah, 4, 70–75.
  47. Shtovba, S. D. (2005). Murav'inye algoritmy: teoriya i primenenie. Programmirovanie, 4, 1–16.
  48. Rotshteyn, A. P., Shtovba, S. D., Kozachko, A. N. (2007). Modelirovanie i optimizaciya nadezhnosti mnogomernyh algoritmicheskih processov. Vinnica: UNІVERSUM-Vіnnicya, 215.
  49. IKONOS Satellite Images Gallery, Satellite Map. Satellite Imaging Corporation. Available at: http://www.satimagingcorp.com/gallery/ikonos

Downloads

Published

2017-10-19

How to Cite

Ruban, I., Khudov, H., Khudov, V., Khizhnyak, I., & Makoveichuk, O. (2017). Segmentation of the images obtained from onboard optoelectronic surveillance systems by the evolutionary method. Eastern-European Journal of Enterprise Technologies, 5(9 (89), 49–57. https://doi.org/10.15587/1729-4061.2017.109904

Issue

Section

Information and controlling system