Examining the influence of electrosynthesis conditions on the composition of tin-oxide catalyst

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110000

Keywords:

electrosynthesis, tin dioxide, tin electrode, catalytic activity, composition of oxide mixture

Abstract

Tin dioxide can serve as an active material in micro- and optoelectronics, energy generation, and catalysis. Its synthesis method is determined by the scope of its application. We established regularities in the electrochemical synthesis of a catalytically-active oxide mixture on the surface of tin in alkaline solutions. By employing the original coulometric method we determined quantitative composition of the electrochemically-obtained oxide films in a wide range of formation potentials. At an electrode potential of ‒0.3, the molar ratio of Sn(II)/Sn(IV) is equal to unity. Based on the analysis of processes that might occur under the specified conditions of electrosynthesis, it can be assumed that the surface of tin is coated with a thin layer of SnSnO3.

Amorphous nature of the electrode surface, passivated at ‒0.3 V, indirectly confirms this assumption. At a potential of 3.0 V, the oxide film’s content of Sn(IV) is 59 % (mol), Sn(II) ‒ 41 % (mol). Consequently, the film contains 18 % (mol) of SN(IV), which is not included in the composition of SnSnO3. In other words, active tin dioxide is formed exactly at such a potential. Catalytic activity of the obtained materials is demonstrated on the example of methyl tert-butyl ether electrooxidation. The starting concentration of MTBE on the tin electrode, oxidized at 3.0 V, is reduced by 98 % within 180 minutes, while only 73 % of MTBE is decomposed over the same time on a nickel electrode. 

Author Biographies

Victor Vargalyuk, Oles Honchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

Doctor of Chemical Sciences, Professor

Department of Physical and Inorganic Chemistry

Kateryna Plyasovskaya, Oles Honchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Physical and Inorganic Chemistry

Irina Sknar, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Anna Cheremysinova, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Oleksii Sigunov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Chemical Technology of Astringent Materials

Olga Sverdlikovska, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processing polymers and photo-, nano -, and polygraphic materials

References

  1. Nazarov, D. V., Bobrysheva, N. P., Osmolovskaya, O. M., Osmolovsky, M. G., Smirnov, V. M. (2015). Atomic layer deposition of tin dioxide nanofilms: A review. Rev. Adv. Mater. Sci., 40, 262–275.
  2. Hu, L., Chen, F., Hu, P., Zou, L., Hu, X. (2016). Hydrothermal synthesis of SnO2/ZnS nanocomposite as a photocatalyst for degradation of Rhodamine B under simulated and natural sunlight. Journal of Molecular Catalysis A: Chemical, 411, 203–213. doi: 10.1016/j.molcata.2015.10.003
  3. Pusawale, S. N., Deshmukh, P. R., Lokhande, C. D. (2011). Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Applied Surface Science, 257 (22), 9498–9502. doi: 10.1016/j.apsusc.2011.06.043
  4. Santhi, K., Rani, C., Karuppuchamy, S. (2016). Synthesis and characterization of a novel SnO/SnO 2 hybrid photocatalyst. Journal of Alloys and Compounds, 662, 102–107. doi: 10.1016/j.jallcom.2015.12.007
  5. Köse, H., Karaal, Ş., Aydin, A. O., Akbulut, H. (2015). Structural properties of size-controlled SnO2 nanopowders produced by sol-gel method. Materials Science in Semiconductor Processing, 38, 404–412. doi: 10.1016/j.mssp.2015.03.028
  6. Luo, W., Deng, J., Fu, Q., Zhou, D., Hu, Y., Gong, S., Zheng, Z. (2015). Nanocrystalline SnO2 film prepared by the aqueous sol-gel method and its application as sensing films of the resistance and SAW H2S sensor. Sensors and Actuators B: Chemical, 217, 119–128. doi: 10.1016/j.snb.2014.10.078
  7. Yadav, A. A. (2015). Influence of film thickness on structural, optical, and electrical properties of spray deposited antimony doped SnO2 thin films. Thin Solid Films, 591, 18–24. doi: 10.1016/j.tsf.2015.08.013
  8. Vargalyuk, V. F., Plyasovska, K. A. (2015). The features of electrooxidation of tin in alkaline solutions K2ТiО3. Bulletin of Dnipropetrovsk National University. Series: Chemistry, 23 (1), 59–63.
  9. Danilov, F. I., Samofalov, V. N., Sknar, I. V., Sknar, Y. E., Baskevich, A. S., Tkach, I. G. (2015). Structure and properties of Ni-Co alloys electrodeposited from methanesulfonate electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 51 (5), 812–816. doi: 10.1134/s2070205115050068
  10. Vargalyuk, V. F., Plyasovskaya, E. A., Nester, E. I. (2016). Еlectrodeposition of tin in presence of K2ТiО3. Bulletin of Dnipropetrovsk National University. Series: Chemistry, 24 (1), 7–12. doi: 10.15421/081602
  11. Danilov, F. I., Sknar, Y. E., Tkach, I. G., Sknar, I. V. (2015). Electrodeposition of nickel-based nanocomposite coatings from cerium(III)-ion-containing methanesulfonate electrolytes. Russian Journal of Electrochemistry, 51 (4), 294–298. doi: 10.1134/s1023193515040023
  12. Danilov, F. I., Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V. (2016). Kinetics of electrodeposition of Ni–ZrO2 nanocomposite coatings from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 52 (5), 494–499. doi: 10.1134/s1023193516050037
  13. Vargalyuk, V. F., Plyasovska, K. A. (2009). Electrochemical formation of SnхTi(1-х)О2 oxide film on tin. Bulletin of Dnipropetrovsk National University. Series: Chemistry, 17 (15), 42–45.
  14. Dirican, M., Yanilmaz, M., Fu, K., Lu, Y., Kizil, H., Zhang, X. (2014). Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. Journal of Power Sources, 264, 240–247. doi: 10.1016/j.jpowsour.2014.04.102
  15. Bian, H., Zhang, J., Yuen, M.-F., Kang, W., Zhan, Y., Yu, D. Y. W. et. al. (2016). Anodic nanoporous SnO 2 grown on Cu foils as superior binder-free Na-ion battery anodes. Journal of Power Sources, 307, 634–640. doi: 10.1016/j.jpowsour.2015.12.118
  16. Vasanth Raj, D., Ponpandian, N., Mangalaraj, D., Viswanathan, C. (2014). Electrochemical behavior of nanostructured SnO2 thin films in aqueous electrolyte solutions. Materials Science in Semiconductor Processing, 26, 55–61. doi: 10.1016/j.mssp.2014.04.003
  17. Afanasyev, D. A., Ibrayev, N. K., Omarova, G. S., Smagulov, Z. K. (2015). Research of the photovoltaic properties of anodized films of Sn. IOP Conference Series: Materials Science and Engineering, 81, 012118. doi: 10.1088/1757-899x/81/1/012118
  18. Teh, J. J., Guai, G. H., Wang, X., Leong, K. C., Li, C. M., Chen, P. (2013). Nanoporous tin oxide photoelectrode prepared by electrochemical anodization in aqueous ammonia to improve performance of dye sensitized solar cell. Journal of Renewable and Sustainable Energy, 5 (2), 023120. doi: 10.1063/1.4798316
  19. Wang, M., Liu, Y., Xue, D., Zhang, D., Yang, H. (2011). Preparation of nanoporous tin oxide by electrochemical anodization in alkaline electrolytes. Electrochimica Acta, 56 (24), 8797–8801. doi: 10.1016/j.electacta.2011.07.085
  20. Zaraska, L., Bobruk, M., Sulka, G. D. (2015). Formation of Nanoporous Tin Oxide Layers on Different Substrates during Anodic Oxidation in Oxalic Acid Electrolyte. Advances in Condensed Matter Physics, 2015, 1–11. doi: 10.1155/2015/302560
  21. Zaraska, L., Czopik, N., Bobruk, M., Sulka, G. D., Mech, J., Jaskuła, M. (2013). Synthesis of nanoporous tin oxide layers by electrochemical anodization. Electrochimica Acta, 104, 549–557. doi: 10.1016/j.electacta.2012.12.059
  22. Zaraska, L., Syrek, K., Hnida, K. E., Bobruk, M., Krzysik, A., Łojewski, T. et. al. (2016). Nanoporous tin oxides synthesized via electrochemical anodization in oxalic acid and their photoelectrochemical activity. Electrochimica Acta, 205, 273–280. doi: 10.1016/j.electacta.2016.02.023
  23. Vargalyuk, V. F., Plyasovskaya, E. A., Zamyatina, A. S. (2015). Peculiarities of the electrooxidation of tin in alkaline medium. Ukrainian Chemistry Journal, 81 (1/2), 40–43.
  24. Takeno, N. (2005). Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report No. 419. Tsukuba: National Institute of Advanced Industrial Science and Technology Research Center for Deep Geological Environments, 285.
  25. Wu, T.-N. (2007). Electrocatalytic oxidation of methyl tert-butyl ether (MTBE) in aqueous solution at a nickel electrode. Chemosphere, 69 (2), 271–278. doi: 10.1016/j.chemosphere.2007.04.021

Downloads

Published

2017-10-30

How to Cite

Vargalyuk, V., Plyasovskaya, K., Sknar, I., Cheremysinova, A., Sigunov, O., & Sverdlikovska, O. (2017). Examining the influence of electrosynthesis conditions on the composition of tin-oxide catalyst. Eastern-European Journal of Enterprise Technologies, 5(6 (89), 29–34. https://doi.org/10.15587/1729-4061.2017.110000

Issue

Section

Technology organic and inorganic substances