Modeling and analysis of the process of polymeric film cooling on the drum with a liquid cooling agent

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110687

Keywords:

extrusion, flat polymeric film, cooled drum, established, thermal mode, temperature field

Abstract

Using the developed mathematical model, we performed an analysis of the process of cooling an extruded polymeric film on the drum with inner cooling. Dependence of average and local temperatures of a polypropylene film and the drum’s shell under condition of drum’s settling under stationary thermal mode was studied. It was shown that temperature difference between the surface of the shell and the refrigerant in the drum at film cooling can reach 40–65 °C and higher, which affects intensity of cooling of a polymeric film. With an increase in the minimum thickness of a film and (or) a decrease in its velocity, the influence of drum’s warm-up on the intensity of film cooling increases. Ignoring the drum’s warm-up process can lead to the insufficient cooling of a polymeric film and thus, to a decrease in its quality. The developed mathematical model could be used to analyze the process of cooling of not a film only, but also of other roll polymeric materials, obtained both by extrusive and rolling-calender method. 

Author Biographies

Ihor Mikulionok, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Chemical, Polymeric and Silicate Engineering

Oleksandr Gavva, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Professor

Department of machines and apparatus for food and pharmaceutical productions

Anton Karvatskii, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Chemical, Polymeric and Silicate Engineering

Mykola Yakymchuk, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Associate Professor

Department of Mechatronics and Packaging Technology 

References

  1. Mirovoy i evropeyskiy rynok plastmass (2005). Plastics Review (Ukraine Edition), 4–8.
  2. Mikulionok, I. O. (2015). Classification of Processes and Equipment for Manufacture of Continuous Products from Thermoplastic Materials. Chemical and Petroleum Engineering, 51 (1-2), 14–19. doi: 10.1007/s10556-015-9990-6
  3. Lukach, Yu. E., Petuhov, A. D., Senatos, V. A. (1981). Oborudovanie dlya proizvodstva polimernyh plenok. Moscow: Mashinostroenie, 224.
  4. Mikulonok, I. O. (2009). Obladnannia i protsesy pererobky termoplastychnykh materialiv z vykorystanniam vtorynnoi syrovyny. Kyiv: IVTs „Vydavnytstvo «Politekhnika»”, 265.
  5. Rauwendaal, C. (1998). Understanding Extrusion. Munich: Hanser, 190.
  6. Gul', V. E., D'yakonov, V. P. (1978). Fiziko-himicheskie osnovy proizvodstva polimernyh plenok. Moscow: Vyssh. shk., 279.
  7. Rauwendaal, C. (2014). Polymer extrusion. Munich: Carl Hanser Verlag, 934. doi: 10.3139/9781569905395
  8. Mikulionok, I. O., Radchenko, L. B. (2012). Screw extrusion of thermoplastics: I. General model of the screw extrusion. Russian Journal of Applied Chemistry, 85 (3), 489–504. doi: 10.1134/s1070427211030305
  9. Mikulionok, I. O., Radchenko, L. B. (2012). Screw extrusion of thermoplastics: II. Simulation of feeding zone of the single screw extruder. Russian Journal of Applied Chemistry, 85 (3), 505–514. doi: 10.1134/s1070427211030317
  10. Mikulionok, I. O. (2013). Screw extruder mixing and dispersing units. Chemical and Petroleum Engineering, 49 (1-2), 103–109. doi: 10.1007/s10556-013-9711-y
  11. D’ Halewyu, S., Agassant, J. F., Demay, Y. (1990). Numerical simulation of the cast film process. Polymer Engineering and Science, 30 (6), 335–340. doi: 10.1002/pen.760300604
  12. Lamberti, G., Titomanlio, G., Brucato, V. (2001). Measurement and modelling of the film casting process 1. Width distribution along draw direction. Chemical Engineering Science, 56 (20), 5749–5761. doi: 10.1016/s0009-2509(01)00286-x
  13. Lamberti, G., Titomanlio, G., Brucato, V. (2002). Measurement and modelling of the film casting process. Chemical Engineering Science, 57 (11), 1993–1996. doi: 10.1016/s0009-2509(02)00098-2
  14. Pol, H., Banik, S., Azad, L. B., Thete, S., Doshi, P., Lele, A. (2013). Nonisothermal analysis of extrusion film casting process using molecular constitutive equations. Rheologica Acta, 53 (1), 85–101. doi: 10.1007/s00397-013-0739-x
  15. Smith, S., Stolle, D. (2003). Numerical simulation of film casting using an updated lagrangian finite element algorithm. Polymer Engineering & Science, 43 (5), 1105–1122. doi: 10.1002/pen.10094
  16. Zhou, Y.-G., Wu, W.-B., Zou, J., Turng, L.-S. (2015). Dual-scale modeling and simulation of film casting of isotactic polypropylene. Journal of Plastic Film & Sheeting, 32 (3), 239–271. doi: 10.1177/8756087915595853
  17. Cotto, D., Duffo, P., Haudin, J. M. (1989). Cast Film Extrusion of Polypropylene Films. International Polymer Processing, 4 (2), 103–113. doi: 10.3139/217.890103
  18. Fischer, C., Seefried, A., Drummer, D. (2016). Crystallization and Component Properties of Polyamide 12 at Processing-Relevant Cooling Conditions. Polymer Engineering & Science, 57 (4), 450–457. doi: 10.1002/pen.24441
  19. Hopmann, C., Hendriks, S., Spicker, C., Zepnik, S., van Lück, F. (2016). Surface roughness and foam morphology of cellulose acetate sheets foamed with 1,3,3,3-tetrafluoropropene. Polymer Engineering & Science, 57 (4), 441–449. doi: 10.1002/pen.24440
  20. Xu, M., Zhang, S., Liang, J., Quan, H., Liu, J., Shi, H. et. al. (2014). Influences of processing on the phase transition and crystallization of polypropylene cast films. Journal of Applied Polymer Science, 131 (22). doi: 10.1002/app.41100
  21. Gahleitner, M., Grein, C., Blell, R., Wolfschwenger, J., Koch, T., Ingolic, E. (2011). Sterilization of propylene/ethylene random copolymers: Annealing effects on crystalline structure and transparency as influenced by polymer structure and nucleation. Express Polymer Letters, 5 (9), 788–798. doi: 10.3144/expresspolymlett.2011.77
  22. Mikulionok, I. O. (2011). Technique of parametric and heat computations of rollers for processing of plastics and rubber compounds. Russian Journal of Applied Chemistry, 84 (9), 1642–1654. doi: 10.1134/s1070427211090333
  23. Mikulionok, I. O. (2012). Modeling of the heat processing of continuously molded product. Russian Journal of Applied Chemistry, 85 (9), 1482–1492. doi: 10.1134/s1070427212090285
  24. Piven', A. N., Grechanaya, N. A., Chernobyl'skiy, I. I. (1976). Teplofizicheskie svoystva polimernyh materialov. Kyiv: Vyshcha shk., 180.
  25. Babichev, A. P., Babushkina, N. A., Bratkovskiy, A. M. et. al.; Grigor'ev, I. S., Meylihov, E. Z. (Eds.) (1991). Fizicheskie velichiny. Moscow: Energoatomizdat, 1232.
  26. Chernobyl'skiy, I. I. (Ed.) (1975). Mashiny i apparaty himicheskih proizvodstv. Moscow: Mashinostroenie, 454.
  27. Wong, H. Y. (1977). Handbook of Essential Formulae and Data on Heat Transfer for Engineers. London: Longman Group, Ltd., 236.
  28. Chikhalikar, K., Banik, S., Azad, L. B., Jadhav, K., Mahajan, S., Ahmad, Z. et. al. (2014). Extrusion film casting of long chain branched polypropylene. Polymer Engineering & Science, 55 (9), 1977–1987. doi: 10.1002/pen.24039

Downloads

Published

2017-10-30

How to Cite

Mikulionok, I., Gavva, O., Karvatskii, A., & Yakymchuk, M. (2017). Modeling and analysis of the process of polymeric film cooling on the drum with a liquid cooling agent. Eastern-European Journal of Enterprise Technologies, 5(5 (89), 67–74. https://doi.org/10.15587/1729-4061.2017.110687

Issue

Section

Applied physics