Formation of the steam phase in superheated liquids in the state of metastable equilibrium

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.112288

Keywords:

superheated liquid, vaporization, heat and mass exchange in metastable liquids, mathematical modeling

Abstract

The results of studies of vaporization processes in liquids in a metastable state were presented. Regularities of heat and mass exchange in thermodynamically unstable liquids (superheated liquids) were considered. A mathematical model of the mutual dynamic effect of boiling drops of a multicomponent liquid was developed with the help of which the level of dynamic effects was estimated from the point of view of possibility of fragmentation of drops of the primary mixture. Accuracy of the known criterion equations for the described homogenization technology was estimated. It was shown that instability of the Rayleigh-Taylor type has the greatest effect on fragmentation of drops.

In the study of the velocity and pressure fields, data were obtained that show that in the inter-bubble space of the ensemble, even with monotonically expanding bubbles, there are sharp jumps in pressures and velocities characteristic of the turbulent flow. This type of flow contributes to intensification and stimulation of heat and mass exchange and hydrodynamic processes in the liquid phase of the bubble system.

The obtained dependences make it possible to qualitatively assess critical forces sufficient for the thermodynamic fragmentation of the secondary phase. The time and energy parameters necessary for fragmentation of drops were determined. They depend on the temperature and size of the disperse phase. The proposed method for determining basic thermodynamic parameters of superheated liquid and vapor is necessary for predicting energy parameters of the thermodynamic homogenization technology.

Author Biographies

Anatoliy Pavlenko, Kielce University of Technology Tysiaclecia Panstwa Polskiego str., 7, Kielce, Poland, 25-314

Doctor of Technical Sciences, Professor

Department of Building Physics and Renewable Energy

Hanna Koshlak, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of oil and gas technological transport

References

  1. Aktershev, S. P., Ovchinnikov, V. V. (2013). Modelirovanie vskipaniya metastabil’noy zhidkosti pri nalichii frontov ispareniya. Sovremennaya nauka: issledovaniya, idei, rezul’taty, tekhnologi, 1, 77–82.
  2. Aktershev, S. P., Ovchinnikov, V. V. (2011). The boiling up model for highly superheated liquid with formation of evaporation front. Thermophysics and Aeromechanics, 18 (4), 591–602. doi: 10.1134/s0869864311040081
  3. Behkish, A., Lemoine, R., Oukaci, R., Morsi, B. I. (2006). Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, 115 (3), 157–171. doi: 10.1016/j.cej.2005.10.006
  4. Shagapov, V. Sh., Koledin, V. V. (2013). K teoryi rosta parovyh puzyr’kov v metastabil’noy zhidkosti. Teplofizika vysokih temperatur, 51 (4), 543–551. doi: 10.7868/s0040364413040212
  5. Ivanickiy, G. K., Korchinskiy, A. A., Matyushkin, M. V. (2003). Matematicheskoe modelirovanie processov v pul'sacionnom dispergatore udarnogo tipa. Promyshlennaya teplotekhnika, 25 (1), 29–35.
  6. Okuyama, K., Kim, J.-H., Mori, S., Iida, Y. (2006). Boiling propagation of water on a smooth film heater surface. International Journal of Heat and Mass Transfer, 49 (13-14), 2207–2214. doi: 10.1016/j.ijheatmasstransfer.2006.01.001
  7. Avramenko, A. A., Sorokina, T. V. (2005). The instability of vapor bubble. Promyshlennaya teplotehnika, 27 (6), 12–15.
  8. Shagapov, V. Sh., Koledin, V. V. (2013). K teorii rosta parovyh puzyr'kov v metastabil'noy zhidkosti. Teplofizika vysokih temperatur, 51 (4), 543–552.
  9. Aktershev, S. P., Ovchinnikov, V. V. (2008). Vapor bubble growth at the surface of flat and cylindrical heaters. Journal of Engineering Thermophysics, 17 (3), 227–234. doi: 10.1134/s1810232808030077
  10. Veretel’nik, T. I., Difuchin, Yu. N. (2008). Matematicheskoe modelirovanie kavitatsionnogo potoka zhidkosti v himiko-tekhnologicheskoy sisteme. Visnyk ChDTU, 3, 82–85.
  11. Stern, L. A., Circone, S., Kirby, S. H., Durham, W. B. (2003). Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Canadian Journal of Physics, 81 (1-2), 271–283. doi: 10.1139/p03-018
  12. Kulinchenko, V. R., Zavialov, V. L., Mysiura, T. H. (2007). Peredumovy stvorennia matematychnoi modeli – osnovni polozhennia i rivniannia rukhu Releia. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohyi, 22, 36–41.
  13. Wenger, M. D., DePhillips, P., Bracewell, D. G. (2008). A Microscale Yeast Cell Disruption Technique for Integrated Process Development Strategies. Biotechnology Progress, 24 (3), 606–614. doi: 10.1021/bp070359s
  14. Savant, S. S., Anil, A. Ch., Krishnamurthy, V., Gaonkar, Ch. et. al. (2008). Effect of hydrodynamic cavitation on zooplankton: a tool for disinfection. Biochem. Eng. Sci., 42 (3), 320–328.
  15. Mel’nikov, V. P., Podenko, L. C., Nesterov, A. N., Reshetnikov, A. M. (2010). Relaksatsionnyi YAMR-analiz fazovyh prevrashcheniy vody v dispersnoy sisteme voda/gidrat freona-12/ uglevodorod pri dissotsiatsyi gidrata. DAN, 433 (1), 59–61.
  16. Aktershev, S. P., Ovchinnikov, V. V. (2007). Dynamics of a vapor bubble in a nonuniformly superheated fluid at high superheat values. Journal of Engineering Thermophysics, 16 (4), 236–243. doi: 10.1134/s1810232807040042
  17. Kushnir, S. V., Kost, M. V., Kozak, R. P. (2016). Barbotazhni khimichni efekty: yikh vydy, mekhanizmy vynyknennia ta heokhimichni proiavy. Nakovo-tekhnichni visti, 3 (20), 30–47.
  18. Pavlenko, A., Koshlak, H. (2015). Design of processes of thermal bloating of silicates. Metallurgical and Mining Industry, 1, 118–122.
  19. Pavlenko, A. M., Basok, B. I. (2005). Regularities of Boiling-Up of Emulsified Liquids. Heat Transfer Research, 36 (5), 419–424. doi: 10.1615/heattransres.v36.i5.90
  20. Pavlenko, A. M., Basok, B. I. (2005). Kinetics of Water Evaporation from Emulsions. Heat Transfer Research, 36 (5), 425–430. doi: 10.1615/heattransres.v36.i5.100
  21. Dolinskiy, A. A., Ivanickiy, G. K. (2008). Teplomassoobmen i gidrodinamika v parozhidkostnyh dispersnyh sredah. Teplofizicheskie osnovy diskretno-impul'snogo vvoda energii. Kyiv: Naukova dumka, 382.
  22. Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. New York: John Wiley & Sons, 482. doi: 10.1002/9780470753767
  23. Li, J., Cheng, P. (2004). Bubble cavitation in a microchannel. International Journal of Heat and Mass Transfer, 47 (12-13), 2689–2698. doi: 10.1016/j.ijheatmasstransfer.2003.11.020
  24. Kanthale, P. M., Gogate, P. R., Pandit, A. B., Wilhelm, A. M. (2005). Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: cluster approach. Ultrasonics Sonochemistry, 12 (6), 441–452. doi: 10.1016/j.ultsonch.2004.05.017
  25. Okutani, K., Kuwabara, Y., Mori, Y. H. (2008). Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and sodium alkyl sulfates. Chemical Engineering Science, 63 (1), 183–194. doi: 10.1016/j.ces.2007.09.012
  26. Leong, T. S. H., Wooster, T. J., Kentish, S. E., Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16 (6), 721–727. doi: 10.1016/j.ultsonch.2009.02.008
  27. Dolinskiy, A. A., Konyk, A. V., Radchenko, N. L. (2016). Vliyanie mgnovennogo sbrosa davleniya na svoystva vody. Vysokochastotnye gidrodinamicheskie kolebaniya. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohyi, 22 (3), 157–165.
  28. Behkish, A., Lemoine, R., Oukaci, R., Morsi, B. I. (2006). Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, 115 (3), 157–171. doi: 10.1016/j.cej.2005.10.006
  29. Ashokkumar, M., Rink, R., Shestakov, S. (2011). Hydrodynamic cavitation – an alternative to ultrasonic food processing. Electronic Journal “Technical Acoustics”, 9. Available at: http://www.ejta.org/en/ashokkumar1

Downloads

Published

2017-10-30

How to Cite

Pavlenko, A., & Koshlak, H. (2017). Formation of the steam phase in superheated liquids in the state of metastable equilibrium. Eastern-European Journal of Enterprise Technologies, 5(5 (89), 35–42. https://doi.org/10.15587/1729-4061.2017.112288

Issue

Section

Applied physics