DOI: https://doi.org/10.15587/1729-4061.2017.114559

Research into effect of propionic and acrylic acids on the electrodeposition of nickel

Oksana Demchyshyna, Victor Vargalyuk, Volodymyr Polonskyy, Irina Sknar, Kateryna Plyasovskaya, Anna Cheremysinova, Oleksii Sigunov

Abstract


Nickel coatings are widely used in machine-building, electronics, automotive and aerospace industries. High requirements for environmental safety and operational performance of contemporary processes of electrochemical nickel plating predetermine the search for the new electrolytes. Electrolytes based on carboxylic acids are characterized by high buffer properties, ecological safety, and enhanced values of limiting current. Heuristic approach when fabricating comprehensive electrolytes, based on empirical data, does not make it possible to conduct predictable optimization of the formulations of nickel plating electrolytes. Solving this problem seems possible when using a quantum-chemical simulation. In this work, we performed quantum-chemical calculations for the propionate and acrylate complexes of nickel. It was established that coordination numbers of the propionate and acrylate complexes of nickel are equal to five and six, respectively. It is shown that electroreduction of the propionate nickel complex proceeds with the formation of an intermediate particle. The negative charge of this particle is localized on the intrasphere molecules of water. This may lead to the electroreduction of the latter and to an increase in the pH of a near-electrode layer. In the intermediate particle of the acrylate complex, localization of the charge occurs on the vinyl fragment of acrylate-ion. Electrochemical reaction of reduction of the coordinated water molecules in such a particle is not energetically favorable. It was established that the isolation of nickel from the acrylate complex proceeds with lower kinetic difficulties than from the propionate complex. An assumption was made that fewer insoluble hydroxide nickel compounds, which block the cathode surface, form in the acrylate electrolyte.

Such an assumption is based on the fact that given close buffer properties of acids, electroreduction of the acrylate complexes does not imply the involvement of coordinated water molecules in the electrode process. The results obtained are very valuable for selecting the nature of carboxylic acid as a component for the complex nickel plating electrolyte

Keywords


electrodeposition; quantum-chemical simulation; propionic acid; acrylic acid; monosubstituted nickel complexes

References


Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi: 10.3103/s1068375516010087

Karakurkchi, A. V. (2015). Functional properties of multicomponent galvanic alloys of iron with molybdenum and tungsten. Functional Materials, 22 (2), 181–187. doi: 10.15407/fm22.02.181

Danilov, F. I., Sknar, I. V., Sknar, Y. E. (2011). Kinetics of nickel electroplating from methanesulfonate electrolyte. Russian Journal of Electrochemistry, 47 (9), 1035–1042. doi: 10.1134/s1023193511090114

Danilov, F. I., Sknar, Y. E., Tkach, I. G., Sknar, I. V. (2015). Electrodeposition of nickel-based nanocomposite coatings from cerium(III)-ion-containing methanesulfonate electrolytes. Russian Journal of Electrochemistry, 51 (4), 294–298. doi: 10.1134/s1023193515040023

Danilov, F. I., Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V. (2016). Kinetics of electrodeposition of Ni–ZrO2 nanocomposite coatings from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 52 (5), 494–499. doi: 10.1134/s1023193516050037

Mech, K. (2017). Influence of organic ligands on electrodeposition and surface properties of nickel films. Surface and Coatings Technology, 315, 232–239. doi: 10.1016/j.surfcoat.2017.02.042

Balakai, V. I., Arzumanova, A. V., Balakai, K. V. (2010). Alkalization of the near-cathode layer in electrodeposition of nickel from a chloride electrode. Russian Journal of Applied Chemistry, 83 (1), 65–71. doi: 10.1134/s1070427210010143

Li, C., Li, X., Wang, Z., Guo, H. (2007). Nickel electrodeposition from novel citrate bath. Transactions of Nonferrous Metals Society of China, 17 (6), 1300–1306. doi: 10.1016/s1003-6326(07)60266-0

Rudnik, E., Wojnicki, M., Włoch, G. (2012). Effect of gluconate addition on the electrodeposition of nickel from acidic baths. Surface and Coatings Technology, 207, 375–388. doi: 10.1016/j.surfcoat.2012.07.027

Sedoikin, A. A., Tsupak, T. E. (2008). The role of migration mass transfer in the electrodeposition of nickel from sulfate-chloride and chloride solutions containing succinic acid. Russian Journal of Electrochemistry, 44 (3), 319–326. doi: 10.1134/s1023193508030099

Ibrahim, M. A. M., Al Radadi, R. M. (2015). Role of Glycine as a Complexing Agent in Nickel Electrodeposition from Acidic Sulphate Bath. Int. J. Electrochem. Sci., 10, 4946–4971.

Mosavat, S. H., Bahrololoom, M. E., Shariat, M. H. (2011). Electrodeposition of nanocrystalline Zn–Ni alloy from alkaline glycinate bath containing saccharin as additive. Applied Surface Science, 257 (20), 8311–8316. doi: 10.1016/j.apsusc.2011.03.017

Nagai, T., Hodouchi, K., Matsubara, H. (2014). Relationship between film composition and microhardness of electrodeposited Ni–W–B films prepared using a citrate–glycinate bath. Surface and Coatings Technology, 253, 109–114. doi: 10.1016/j.surfcoat.2014.05.022

Ergeneman, O., Sivaraman, K. M., Pané, S., Pellicer, E., Teleki, A., Hirt, A. M. et. al. (2011). Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine. Electrochimica Acta, 56 (3), 1399–1408. doi: 10.1016/j.electacta.2010.10.068

Dolgikh, O. V., Zuen, V. T., Sotskaya, N. V. (2009). The influence of the nature of background anions on the buffer capacity of glycine-containing electrolytes for nickel electroplating. Russian Journal of Physical Chemistry A, 83 (6), 939–944. doi: 10.1134/s0036024409060120

Taranina, O. A., Evreinova, N. V., Shoshina, I. A., Naraev, V. N., Tikhonov, K. I. (2010). Electrodeposition of nickel from sulfate solutions in the presence of aminoacetic acid. Russian Journal of Applied Chemistry, 83 (1), 58–61. doi: 10.1134/s107042721001012x

Sotskaya, N. V., Dolgikh, O. V. (2008). Nickel electroplating from glycine containing baths with different pH. Protection of Metals, 44 (5), 479–486. doi: 10.1134/s0033173208050123

Foresman, J. B., Keith, T. A., Wiberg, K. B., Snoonian, J., Frisch, M. J. (1996). Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations. The Journal of Physical Chemistry, 100 (40), 16098–16104. doi: 10.1021/jp960488j

Cramer, C. J., Truhlar, D. G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 11 (46), 10757. doi: 10.1039/b907148b

Seredyuk, V. A., Vargalyuk, V. F. (2008). Estimation of reliability of quantum-chemical calculations of electronic transitions in aqua complexes of transition metals. Russian Journal of Electrochemistry, 44 (10), 1105–1112. doi: 10.1134/s1023193508100042

Rabinovich, V. A., Khavin, Z. Ya.; Potekhin, A. A., Efimov, A. I. (Eds.) (1991). Quick reference. Leningrad: Chemistry, 432.


GOST Style Citations


Karakurkchi, A. V. Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte [Text] / A. V. Karakurkchi, M. V. Ved’, I. Yu. Yermolenko, N. D. Sakhnenko // Surface Engineering and Applied Electrochemistry. – 2016. – Vol. 52, Issue 1. – P. 43–49. doi: 10.3103/s1068375516010087 

Karakurkchi, A. V. Functional properties of multicomponent galvanic alloys of iron with molybdenum and tungsten [Text] / A. V. Karakurkchi // Functional materials. – 2015. – Vol. 22, Issue 2. – P. 181–187. doi: 10.15407/fm22.02.181 

Danilov, F. I. Kinetics of nickel electroplating from methanesulfonate electrolyte [Text] / F. I. Danilov, I. V. Sknar, Yu. E. Sknar // Russian Journal of Electrochemistry. – 2011. – Vol. 47, Issue 9. – P. 1035–1042. doi: 10.1134/s1023193511090114 

Danilov, F. I. Electrodeposition of nickel-based nanocomposite coatings from cerium(III)-ion-containing methanesulfonate electrolytes [Text] / F. I. Danilov, Yu. E. Sknar, I. G. Tkach, I. V. Sknar // Russian Journal of Electrochemistry. – 2015. – Vol. 51, Issue 4. – P. 294–298. doi: 10.1134/s1023193515040023 

Danilov, F. I. Kinetics of electrodeposition of Ni–ZrO2 nanocomposite coatings from methanesulfonate electrolytes [Text] / F. I. Danilov, Yu. E. Sknar, N. V. Amirulloeva, I. V. Sknar // Russian Journal of Electrochemistry. – 2016. – Vol. 52, Issue 5. – P. 494–499. doi: 10.1134/s1023193516050037 

Mech, K. Influence of organic ligands on electrodeposition and surface properties of nickel films [Text] / K. Mech // Surface and Coatings Technology. – 2017. – Vol. 315. – P. 232–239. doi: 10.1016/j.surfcoat.2017.02.042 

Balakai, V. I. Alkalization of the near-cathode layer in electrodeposition of nickel from a chloride electrode [Text] / V. I. Balakai, A. V. Arzumanova, K. V. Balakai // Russian Journal of Applied Chemistry. – 2010. – Vol. 83, Issue 1. – P. 65–71. doi: 10.1134/s1070427210010143 

Li, C. Nickel electrodeposition from novel citrate bath [Text] / C. Li, X. Li, Z. Wang, H. Guo // Transactions of Nonferrous Metals Society of China. – 2007. – Vol. 17, Issue 6. – P. 1300–1306. doi: 10.1016/s1003-6326(07)60266-0 

Rudnik, E. Effect of gluconate addition on the electrodeposition of nickel from acidic baths [Text] / E. Rudnik, M. Wojnicki, G. Włoch // Surface and Coatings Technology. – 2012. – Vol. 207. – P. 375–388. doi: 10.1016/j.surfcoat.2012.07.027 

Sedoikin, A. A. The role of migration mass transfer in the electrodeposition of nickel from sulfate-chloride and chloride solutions containing succinic acid [Text] / A. A. Sedoikin, T. E. Tsupak // Russian Journal of Electrochemistry. – 2008. – Vol. 44, Issue 3. – P. 319–326. doi: 10.1134/s1023193508030099 

Ibrahim, M. A. M. Role of Glycine as a Complexing Agent in Nickel Electrodeposition from Acidic Sulphate Bath [Text] / M. A. M. Ibrahim, R. M. Al Radadi // Int. J. Electrochem. Sci. – 2015. – Vol. 10. – Р. 4946–4971.

Mosavat, S. H. Electrodeposition of nanocrystalline Zn–Ni alloy from alkaline glycinate bath containing saccharin as additive [Text] / S. H. Mosavat, M. E. Bahrololoom, M. H. Shariat // Applied Surface Science. – 2011. – Vol. 257, Issue 20. – P. 8311–8316. doi: 10.1016/j.apsusc.2011.03.017 

Nagai, T. Relationship between film composition and microhardness of electrodeposited Ni–W–B films prepared using a citrate–glycinate bath [Text] / T. Nagai, K. Hodouchi, H. Matsubara // Surface and Coatings Technology. – 2014. – Vol. 253. – P. 109–114. doi: 10.1016/j.surfcoat.2014.05.022 

Ergeneman, O. Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine [Text] / O. Ergeneman, K. M. Sivaraman, S. Pané, E. Pellicer, A. Teleki, A. M. Hirt et. al. // Electrochimica Acta. – 2011. – Vol. 56, Issue 3. – P. 1399–1408. doi: 10.1016/j.electacta.2010.10.068 

Dolgikh, O. V. The influence of the nature of background anions on the buffer capacity of glycine-containing electrolytes for nickel electroplating [Text] / O. V. Dolgikh, V. T. Zuen, N. V. Sotskaya // Russian Journal of Physical Chemistry A. – 2009. – Vol. 83, Issue 9. – P. 939–944. doi: 10.1134/s0036024409060120 

Taranina, O. A. Electrodeposition of nickel from sulfate solutions in the presence of aminoacetic acid [Text] / O. A. Taranina, N. V. Evreinova, I. A. Shoshina, V. N. Naraev, K. I. Tikhonov // Russian Journal of Applied Chemistry. – 2010. – Vol. 93, Issue 1. – P. 58–61. doi: 10.1134/s107042721001012x 

Sotskaya, N. V. Nickel electroplating from glycine containing baths with different pH [Text] / N. V. Sotskaya, O. V. Dolgikh // Protection of Metals. – 2008. – Vol. 44, Issue 5. – P. 479–486. doi: 10.1134/s0033173208050123 

Foresman, J. B. Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations [Text] / J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch // The Journal of Physical Chemistry. – 1996. – Vol. 100, Issue 40. – P. 16098–16104. doi: 10.1021/jp960488j 

Cramer, C. J. Density functional theory for transition metals and transition metal chemistry [Text] / C. J. Cramer, D. G. Truhlar // Physical Chemistry Chemical Physics. – 2009. – Vol. 11, Issue 46. – P. 10757. doi: 10.1039/b907148b 

Seredyuk, V. A. Estimation of reliability of quantum-chemical calculations of electronic transitions in aqua complexes of transition metals [Text] / V. A. Seredyuk, V. F. Vargalyuk // Russian Journal of Electrochemistry. – 2008. – Vol. 44, Issue 10. – P. 1105–1112. doi: 10.1134/s1023193508100042 

Rabinovich, V. A. Quick reference [Text] / V. A. Rabinovich, Z. Ya. Khavin; A. A. Potekhin, A. I. Efimov (Eds.). – 3-e izd., pererab. i dop. – Leningrad: Himiya, 1991. – 432 p.







Copyright (c) 2017 Oksana Demchyshyna, Victor Vargalyuk, Volodymyr Polonskyy, Irina Sknar, Kateryna Plyasovskaya, Anna Cheremysinova, Oleksii Sigunov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061