Processing of noisy digital images with use of evolving autoencoders

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.116134

Keywords:

digital image processing, noise filtering, evolution, population, artificial neural network, genetic algorithm, autoencoder

Abstract

A promising class of neural network models used recently to solve the problems of recognition of noisy images are denoising autoencoders. In particular, the evolutionary approach can be effectively used in DAE to determine the network architecture, weights and learning algorithm. The proposed neural network evolving autoencoder allows efficient processing of noisy images due to the iterative learning procedure even in the presence of local distortions. When using the EDAE for determining the network architecture, weights and learning algorithm, standard evolutionary procedures (population initialization, population assessment, selection, crossover, mutation), as well as the evolutionary algorithm for the ANN adjustment and special chromosome formats are used.

The proposed approach to filtering and recognition of noisy images based on the EDAE application is promising for environmental monitoring of landscape and industrial areas

Author Biographies

Oleksandr Bezsonov, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of information systems

Oleg Rudenko, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor, Head of Department

Department of information systems

Serhii Udovenko, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor, Head of Department

Department of informatics and computer technique

Olga Dudinova, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Postgraduate student

Department of Electronic Computers

References

  1. Udovenko, S. G., Shamraev, A. A., Shamraeva, E. O. (2013). Metody obrabotki kartograficheskih izobrazheniy. 23-ya Mezhdunarodnaya Krymskaya konferentsiya «SVCh-tekhnika i telekommunikatsionnye tekhnologii». Sevastopol': Veber, 394–395.
  2. Dudinova, O. B., Udovenko, S. G. (2015). Metod neyrosetevoy obrabotki zashumlennyh prostranstvennyh dannyh. Avtomatizirovannye sistemy upravleniya i pribory avtomatiki, 173, 14–23.
  3. Bessonov, A. A., Bobuh, V. A., Rudenko, O. G. (2005). Apparatnaya realizatsiya nechetkoy seti SMAS i ee primenenie dlya zadach szhatiya izobrazheniy. Avtomatika. Avtomatizatsiya. Elektrotekhnicheskie kompleksy i sistemy, 2 (16), 47–52.
  4. Rudenko, O., Bezsonov, O. (2011). Function Approximation Using Robust Radial Basis Function Networks. Journal of Intelligent Learning Systems and Applications, 03 (01), 17–25. doi: 10.4236/jilsa.2011.31003
  5. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th international conference on Machine learning – ICML '08. doi: 10.1145/1390156.1390294
  6. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11, 3371–3408.
  7. Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., Bengio, S. (2010). Why does unsupervised pre-training help deep learning. JMLR, 11, 625–660.
  8. Hurshudov, A. A. (2014). Obuchenie mnogosloynogo razrezhennogo avtoenkodera na izobrazheniyah bol'shogo masshtaba. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, 2 (116), 27–31.
  9. Potapov, A. S. (2012). Principle of representational minimum description length in image analysis and pattern recognition. Pattern Recognition and Image Analysis, 22 (1), 82–91. doi: 10.1134/s1054661812010294
  10. Potapov, A. S., Shcherbakov, O. V., Zhdanov, I. N. (2013). Metod predskazaniya na osnove algoritmicheskoy veroyatnosti v zadache vosstanovleniya izobrazheniy v uteryannyh oblastyah. Opticheskiy zhurnal, 80 (11), 48–53.
  11. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J. (2011). Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. Lecture Notes in Computer Science, 52–59. doi: 10.1007/978-3-642-21735-7_7
  12. Floreano, D., Dürr, P., Mattiussi, C. (2008). Neuroevolution: from architectures to learning. Evolutionary Intelligence, 1 (1), 47–62. doi: 10.1007/s12065-007-0002-4
  13. Auger, A., Hansen, N. (2011). Theory of Evolution Strategies: A New Perspective. Series on Theoretical Computer Science, 289–325. doi: 10.1142/9789814282673_0010
  14. Autoencoders. Available at: http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

Downloads

Published

2017-11-24

How to Cite

Bezsonov, O., Rudenko, O., Udovenko, S., & Dudinova, O. (2017). Processing of noisy digital images with use of evolving autoencoders. Eastern-European Journal of Enterprise Technologies, 6(9 (90), 63–69. https://doi.org/10.15587/1729-4061.2017.116134

Issue

Section

Information and controlling system