Transfer processes in polymer membranes. Part 2

Authors

  • Інесса Анатоліївна Буртна National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy avenue, 37, Building 4, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.11731

Keywords:

Pervaporation, polymer membrane, mechanism of mass transfer, component of organic mixture, fraction

Abstract

The article relates to the studies of the mechanisms of mass transfer in the separation of multicomponent liquid organic mixtures on pervaporation homogeneous polymer membranes with different morphology of macromolecular lattice. The article presents interaction of the mechanisms of transfer of mixtures of different size and shape of the structure, which form separate substances and which are components of the mixture, with the structure of the membrane, as well as with modes of production processes of pervaporation separation.

It can be assumed that the use of polymeric membranes to separate the individual components from multicomponent organic mixtures, such as crude oil, gas condensate, pyrolysis liquid, etc., is very promising. Source liquid can be divided into fractions (gasoline, diesel, oiled). Moreover, each of them can be divided into even narrower fractions, such as kerosene, naphtha, solar and so on. In addition, step-type, fine selection permits to separate from the gasoline fraction substances with zero octane number, and receive high-octane gasoline without any additional processing steps. In addition, a separation of completely dehydrated kerosene and oil components is of great interest

Author Biography

Інесса Анатоліївна Буртна, National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy avenue, 37, Building 4, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Bioengineering and Engineering. Faculty of Biotechnology and Bioengineering

References

  1. Marion K. Buckley-Smith. The Use of Solubility Parameters to select membrane materials for Pervaporation of organic mixtures [Текст] / The University of WAIKATO, Hamilton, NewZealand. – 2006. – c.18-56.
  2. Rajeev S. Prabhakar, Benny D. Freeman, Ian Roman. Gasand Vapor Sorption and Permeation [Текст]/ Macromolecules. 2004. – 37. – c.7688-7697.
  3. Peter Ross Neal. An Examination of the nature critical flux and membrane fouling by direct observation[Текст] / The University of New South Wales. – 2006.
  4. T.A.Peters, R.A. vanDam. Hollow fiber microporous silica membranes for gas separation and pervaporation [Текст] / Jornal of membrane Science. – 2005. – 248. – c.73-80.
  5. И.А.Буртная. Мембранное разделение стабильных газових конденсатов [Текст] /И.А.Буртная, А.И.Гагулашвили, О.О.Гачечиладзе, Л.И.Ружинская, А.И.Хананашвили, Н.В.Шафаренко // Химия и технология топлив и масел.-2005.-№6(532).-c.10-12.
  6. И.А.Буртная. Имплементация нанотехнологий в утилизации шин (Вторая часть) [Текст] / И.А.Буртная, О.О.Гачечиладзе // Восточно-европейский журнал передовых технологий.-2012.-№2/12(56). – c.50-53.
  7. Мембранное выделение керосиновой и дизельной фракций из смеси тяжелой нефти и газового конденсата [Текст] // Промышленный сервис.-2012. - №1(42). – c.2-4.
  8. Shao D., HuangR.Y.M. Polymeric membrane Pervaporation. [Текст] / Department of Chemical Engineering University of Waterloo, Ont, Canada. – 2006.
  9. M.H.Kloppferand, B.Flaconneche . Transport Properties of Gasesin Polymers [Текст], Bibliographic Review / Oil & Gas Science and Technology. – 2001. - Vol 56, No. 3. – c.223-244.
  10. Stern S.A. Polymers for gas separation: the next decade [Текст] / J.Membr.Sci. – 1994. - V. 94. – c.1–65.
  11. Marion K. Buckley-Smith (2006). The Use of Solubility Parameters to select membrane materials for Pervaporation of organic mixtures. The University of WAIKATO, Hamilton, NewZealand.18-56.
  12. Rajeev S. Prabhakar, Benny D. Freeman, Ian Roman (2004). Gas and Vapor Sorption and Permeation. Macromolecules, 37.7688-7697.
  13. Peter Ross Neal (2006). An Examination of the nature critical flux and membrane fouling by direct observation. The University of New South Wales.
  14. T.A.Peters, R.A. vanDam (2005). Hollow fiber microporous silica membranes for gas separation and pervaporation. Jornal of membrane Science, 248. 73-80
  15. I.A.Burtna, A.I. Gagulashvili, O.O.Gachechiladze, L.I.Rhuzhinskaya, A.I.Khahanashvili, N.V.Shafarenko (2005). Membrane separation of stable gas condensates. Chemistry and technology of fuels and oils, №6(532).-10-12.
  16. I.A.Burtna, O.O.Gachechiladze. Nanotechnology implementation in tire utilisation. (part 2) (2012). Eastern-European Journal Of Enterprise Technologies, -№2/12(56).-50-53.
  17. Membrane separation of kerosene and diesel fractions from mixture of heavy oil and gas condensate (2012). Industrial service, - №1(42). -2-4.
  18. Shao D., HuangR.Y.M (2006). Polymeric membrane Pervaporation. Department of Chemical Engineering University of Waterloo, Ont, Canada.
  19. M.H.Kloppfer and B.Flaconneche (2001). Transport Properties of Gasesin Polymers: Bibliographic Review. Oil & Gas Science and Technology, Vol 56, No. 3, 223-244.
  20. Stern S.A (1994). Polymers for gas separation: the next decade. J.Membr.Sci., V. 94, 1–65.

Published

2013-04-25

How to Cite

Буртна, І. А. (2013). Transfer processes in polymer membranes. Part 2. Eastern-European Journal of Enterprise Technologies, 2(11(62), 41–44. https://doi.org/10.15587/1729-4061.2013.11731