A study of multilayered electrochromic platings based on nickel and cobalt hydroxides

Authors

  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732

DOI:

https://doi.org/10.15587/1729-4061.2018.121679

Keywords:

Ni(OH)2, Co(OH)2, electrochromism, electrochromic materials, CoOOH, polyvinyl alcohol, multilayered films

Abstract

The multilayered electrochromic films based on Ni(OH)2 and Co(OH)2 have been prepared using sequential cathodic template deposition for solutions containing polyvinyl alcohol, nickel nitrate and cobalt nitrate at a current density of 0.625 mA/cm2. The prepared films have demonstrated electrochemical activity and high electrochromic properties – coloration degree 25–80 %, high reversibility during cycling. The prepared films had a large number of structural defects and, possibly, large amounts of structural water, determined from them being X-ray amorphous. All the films had demonstrated similar electrochemical characteristics, except for the film composed of three layers of Ni(OH)2, Co(OH)2 and Ni(OH)2. The best electrochromic characteristics had been demonstrated by the film prepared by consecutive deposition from solutions with polyvinyl alcohol containing nickel nitrate and cobalt nitrate for 2 and 78 minutes, respectively: coloration degree of 80 %, rectangular shape of the coloration-bleaching curve. A simple mechanism has been proposed, which describes better electrochromic characteristics of this film. It consists in the oxidation of cobalt hydroxide to CoOOH, which can act as an electrically conductive bridge between the substrate and the Ni(OH)2 layer

Author Biographies

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Cai, G., Eh, A. L.-S., Ji, L., Lee, P. S. (2017). Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 1 (12), 1700074. doi: 10.1002/adsu.201700074
  2. Patel, K. J., Bhatt, G. G., Ray, J. R., Suryavanshi, P., Panchal, C. J. (2016). All-inorganic solid-state electrochromic devices: a review. Journal of Solid State Electrochemistry, 21 (2), 337–347. doi: 10.1007/s10008-016-3408-z
  3. Qu, H.-Y., Primetzhofer, D., Arvizu, M. A., Qiu, Z., Cindemir, U., Granqvist, C. G., Niklasson, G. A. (2017). Electrochemical Rejuvenation of Anodically Coloring Electrochromic Nickel Oxide Thin Films. ACS Applied Materials & Interfaces, 9 (49), 42420–42424. doi: 10.1021/acsami.7b13815
  4. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: 10.15587/1729-4061.2017.97371
  5. Bendert, R. M. (1989). Effect of Coprecipitated Metal Ions on the Electrochromic Properties of Nickel Hydroxide. Journal of The Electrochemical Society, 136 (5), 1369. doi: 10.1149/1.2096923
  6. Kraft, A., Rottmann, M. (2009). Properties, performance and current status of the laminated electrochromic glass of Gesimat. Solar Energy Materials and Solar Cells, 93 (12), 2088–2092. doi: 10.1016/j.solmat.2009.05.010
  7. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
  8. Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  9. Chao, Y., Xin-Bo, X., Zhi-Biao Z. et al. (2015) Fabrication of Nickel-Based Composite Film Electrode for Supercapacitors by a New Method of Anodization/GCD. Acta Physico-Chimica Sinica, 31(1), 99-104(6).
  10. Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: 10.15587/1729-4061.2017.109814
  11. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: 10.15587/1729-4061.2017.95699
  12. Shi, J., Lai, L., Zhang, P., Li, H., Qin, Y., Gao, Y. et. al. (2016). Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route. Journal of Solid State Chemistry, 241, 1–8. doi: 10.1016/j.jssc.2016.05.032
  13. Lin, F., Gillaspie, D. T., Dillon, A. C., Richards, R. M., Engtrakul, C. (2013). Nitrogen-doped nickel oxide thin films for enhanced electrochromic applications. Thin Solid Films, 527, 26–30. doi: 10.1016/j.tsf.2012.12.031
  14. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: 10.15587/1729-4061.2017.103010
  15. Švegl, F., Šurca Vuk, A., Hajzeri, M., Slemenik Perše, L., Orel, B. (2012). Electrochromic properties of Ni(1−x)O and composite Ni(1−x)O-polyaniline thin films prepared by the peroxo soft chemistry route. Solar Energy Materials and Solar Cells, 99, 14–25. doi: 10.1016/j.solmat.2011.11.043
  16. Kotok, V.A., Kovalenko, V.L., Kovalenko, P.V., Solovov, V.A., Deabate, S., Mehdi, A., Bantignies, J.L., Henn F. (2017) Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12(13), 3962 – 3977.
  17. Fantini, M. (2002). Theoretical and experimental results on Au–NiO and Au–CoO electrochromic composite films. Solid State Ionics, 152-153, 867–872. doi: 10.1016/s0167-2738(02)00387-9
  18. Jiang, S., Yuan, G., Hua, C., Khan, S., Wu, Z., Liu, Y. et. al. (2017). Electrochromic Properties of Ni/NiO/rGO Nanocomposite Films Prepared by a Facile Sol-Gel Technique. Journal of The Electrochemical Society, 164 (13), H896–H902. doi: 10.1149/2.1231713jes
  19. Vidotti, M., van Greco, C., Ponzio, E. A., Córdoba de Torresi, S. I. (2006). Sonochemically synthesized Ni(OH)2 and Co(OH)2 nanoparticles and their application in electrochromic electrodes. Electrochemistry Communications, 8 (4), 554–560. doi: 10.1016/j.elecom.2006.01.024
  20. Cerc Korosec, R. (2003). Preparation and structural investigations of electrochromic nanosized NiOx films made via the sol–gel route. Solid State Ionics, 165 (1-4), 191–200. doi: 10.1016/j.ssi.2003.08.032
  21. Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH) 2 -Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: 10.1149/2.0071712jss
  22. Liu S. (2016). Layer-by-layer assembled WO3 and tungstophosphate nanocomposite with enhanced electrochromic properties. Journal of Materials Science: Materials in Electronics, 27 (10), 11118–11125. doi: 10.1007/s10854-016-5229-3
  23. Moazzen, E., Timofeeva, E. V., Segre, C. U. (2017). Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH) 2 /Co(OH) 2 core/shell battery cathode. Electrochimica Acta, 258, 684–693. doi: 10.1016/j.electacta.2017.11.114
  24. Jiang, L., Shanmuganathan, S., Nelson, G. W., Han, S. O., Kim, H., Na Sim, I., Foord, J. S. (2017). Hybrid system of nickel–cobalt hydroxide on carbonised natural cellulose materials for supercapacitors. Journal of Solid State Electrochemistry, 22 (2), 387–393. doi: 10.1007/s10008-017-3723-z
  25. Grote, F., Yu, Z.-Y., Wang, J.-L., Yu, S.-H., Lei, Y. (2015). Self-Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt-Nickel Hydroxide by One-Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors. Small, 11 (36), 4666–4672. doi: 10.1002/smll.201501037
  26. Micka, K., Zábranský, Z., Svatá, M. (1982). Optimisation of active material for positive electrodes of Ni-Cd accumulators. Journal of Power Sources, 8 (1), 9–16. doi: 10.1016/0378-7753(82)80003-7
  27. Ten'kovtsev, V. V., Tsenter, B. I. (1985). Osnovy teorii i ekspluatatsii germetichnyh nikel'- kadmievyh akkumulyatorov. Leningrad: Energoatomizdat, 93.
  28. Li, X., Xia, T., Dong, H., Wei, Y. (2006). Study on the reduction behavior of CoOOH during the storage of nickel/metal-hydride battery. Materials Chemistry and Physics, 100 (2-3), 486–489. doi: 10.1016/j.matchemphys.2006.01.031

Downloads

Published

2018-01-24

How to Cite

Kotok, V., & Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1(12 (91), 29–35. https://doi.org/10.15587/1729-4061.2018.121679

Issue

Section

Materials Science