Effect of mechanoactivated chemical additives on the process of gas hydrate formation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.123885

Keywords:

methane gas hydrates, mechanoactivation, heterogeneous catalysis, rate of hydrate formation, dissociation, aluminosilicates, phase transformations

Abstract

This study addresses the production of gas hydrate of methane with a high gas-hydrate-forming content in a solid phase in the isolated system at T=274 K and pressure of 5 MPa and presence of mechanically activated rocks close to the bottom of the chamber.

We used mechanically activated samples of various degrees of grinding to increase an area of contact surface of heterogeneous phases. We carried out mechanochemical activation of materials in a vertical vibrating mill (VVM).

In the study, we found out that formation of gas hydrates on activated aluminosilicates leads to the cryochemical synthesis of hydrocarbons, due to formation of additional reaction centers formed upon activation. This indicates a change in the mechanism of formation of GH during the process. We calculated three rate constants for the formation of GH of methane, which vary from 1.20×10-2 to 1.25×10-2 hour-1, based on semi-logarithmic anamorphosis. The study showed that formation of methane gas hydrates in presence of activated additives leads to formation of up to 5−6 % of ethane. Chromatographic method confirmed this.

This indicates possibility of carrying out a low-temperature synthesis of higher hydrocarbons in the artificial production of GH, in contrast to the known mechanochemical transformations during the process of obtaining gas from gas hydrates.

Author Biographies

Volodymyr Bondarenko, National Mining University Yavornytskoho ave., 19, Dnipro, Ukraine, 49600

Doctor of Technical Sciences, Professor, Head of Department

Department of Underground Mining

Olena Svietkina, National Mining University Yavornytskoho ave., 19, Dnipro, Ukraine, 49600

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Chemistry

Kateryna Sai, National Mining University Yavornytskoho ave., 19, Dnipro, Ukraine, 49600

PhD, Assistant

Department of Underground Mining

References

  1. Basu, R. (2017). Evaluation of some renewable energy technologies. Mining of Mineral Deposits, 11 (4), 29–37. doi: 10.15407/mining11.04.029
  2. Tabachenko, M., Saik, P., Lozynskyi, V., Falshtynskyi, V., Dychkovskyi, R. (2016). Features of setting up a complex, combined and zero-waste gasifier plant. Mining of Mineral Deposits, 10 (3), 37–45. doi: 10.15407/mining10.03.037
  3. Lozynskyi, V. G., Dychkovskyi, R. O., Falshtynskyi, V. S., Saik, P. B., Malanchuk, Ye. Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 21–29.
  4. Khomenko, O., Kononenko, M., Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Mining of Mineral Deposits, 231–235. doi: 10.1201/b16354-43
  5. Fomychov, V. (2016). Efficiency of energy resource production while optimizing parameters of socio-economic balance. Mining of Mineral Deposits, 10 (1), 89–95. doi: 10.15407/mining10.01.089
  6. Kononenko, M., Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining, 193–197. doi: 10.1201/b11329-32
  7. Max, M. D., Johnson, A. H. (2016). Deepwater Natural Gas Hydrate Innovation Opportunities. Exploration and Production of Oceanic Natural Gas Hydrate, 173–194. doi: 10.1007/978-3-319-43385-1_6
  8. Carroll, J. (2014). Natural gas hydrates: A guide for engineers. Oxford, United Kingdom: Elsevier, 340.
  9. Gas hydrate (2007). Hawley’s condensed chemical dictionary. John Wiley & Sons, Inc. doi: 10.1002/9780470114735.hawley07697
  10. Boswell, R. (2009). Is Gas Hydrate Energy Within Reach? Science, 325 (5943), 957–958. doi: 10.1126/science.1175074
  11. Max, M. D., Johnson, A. H. (2016). Commercial Potential of Natural Gas Hydrate. Exploration and Production of Oceanic Natural Gas Hydrate, 355–394. doi: 10.1007/978-3-319-43385-1_11
  12. Dychkovskyi, R., Lozynskyi, V., Saik, P. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering. doi: 10.1016/j.acme.2018.01.012
  13. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., Illiashov, M. (2013). Mining of mineral deposits. CRC Press, 382. doi: 10.1201/b16354
  14. Mohebbi, V., Behbahani, R. M. (2014). Experimental study on gas hydrate formation from natural gas mixture. Journal of Natural Gas Science and Engineering, 18, 47–52. doi: 10.1016/j.jngse.2014.01.016
  15. Siažik, J., Malcho, M. (2017). Accumulation of Primary Energy Into Natural Gas Hydrates. Procedia Engineering, 192, 782–787. doi: 10.1016/j.proeng.2017.06.135
  16. Takahashi, M., Moriya, H., Katoh, Y., Iwasaki, T. (2008). Development of natural gas hydrate (NGH) pellet production system by bench scale unit for transportation and storage of NGH pellet. Proceeding of the 6 International Conference on Gas Hydrates.
  17. Watanabe, S., Takahashi, S., Mizubayashi, H., Murata, S., Murakami, H. (2008). Demonstration project of NGH land transportation system. Proceeding of the 6 International Conference on Gas Hydrates.
  18. Abbasian Rad, S., Rostami Khodaverdiloo, K., Karamoddin, M., Varaminian, F., Peyvandi, K. (2015). Kinetic study of amino acids inhibition potential of Glycine and l -leucine on the ethane hydrate formation. Journal of Natural Gas Science and Engineering, 26, 819–826. doi: 10.1016/j.jngse.2015.06.053
  19. Sa, J.-H., Kwak, G.-H., Han, K., Ahn, D., Cho, S. J., Lee, J. D., Lee, K.-H. (2016). Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids. Scientific Reports, 6 (1). doi: 10.1038/srep31582
  20. Semenov, M. E., Portnyagin, A. S., Shits, E. Yu. (2017). Poluchenie sinteticheskih gidratov prirodnogo gaza iz l'da v zakrytyh reaktorah pri termociklirovanii. Nauka i obrazovanie, 3, 76–81.
  21. Ganushevych, K., Sai, K., Korotkova, A. (2014). Creation of gas hydrates from mine methane. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 505–509. doi: 10.1201/b17547-85
  22. Bondarenko, V. I., Sai, K. S., Ganushevych, K. A. (2015). Mathematical model development of hydrate formation process intensification based on the results of experimental studies. Mining of Mineral Deposits, 9 (2), 259–266. doi: 10.15407/mining09.02.259
  23. Bondarenko, V. I., Kharin, Ye. N., Antoshchenko, N. I., Gasyuk, R. L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 24–30.
  24. Lozynskyi, V. H., Dychkovskyi, R. O., Falshtynskyi, V. S., Saik, P. B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 22–28.
  25. Lozynskyi, V., Saik, P., Petlovanyi, M. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, 35, 140–151.
  26. Uddin, M., Wright, F., Dallimore, S., Coombe, D. (2014). Gas hydrate dissociations in Mallik hydrate bearing zones A, B, and C by depressurization: Effect of salinity and hydration number in hydrate dissociation. Journal of Natural Gas Science and Engineering, 21, 40–63. doi: 10.1016/j.jngse.2014.07.027
  27. Bhade, P., Phirani, J. (2015). Effect of geological layers on hydrate dissociation in natural gas hydrate reservoirs. Journal of Natural Gas Science and Engineering, 26, 1549–1560. doi: 10.1016/j.jngse.2015.05.016
  28. Vadakkepuliyambatta, S., Chand, S., Bünz, S. (2017). The history and future trends of ocean warming-induced gas hydrate dissociation in the SW Barents Sea. Geophysical Research Letters, 44 (2), 835–844. doi: 10.1002/2016gl071841
  29. Koltun, P., Klymenko, V. (2016). Methane Hydrates – Australian perspective. Mining of Mineral Deposits, 10 (4), 11–18. doi: 10.15407/mining10.04.011
  30. Hanushevych, K., Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits, 11 (3), 23–34. doi: 10.15407/mining11.03.023
  31. Koh, C. A., Sum, A. K., Sloan, E. D. (2012). State of the art: Natural gas hydrates as a natural resource. Journal of Natural Gas Science and Engineering, 8, 132–138. doi: 10.1016/j.jngse.2012.01.005
  32. Bondarenko, V. I., Ganushevich, K. A., Sai, E. S. (2011). K voprosu skvazhinnoy podzemnoy razrabotki gazovyh gidratov. Naukovyi visnyk NHU, 1, 60–66.
  33. Bondarenko, V., Ganushevych, K., Sai, K., Tyshchenko, A. (2011). Development of gas hydrates in the Black sea. Technical and Geoinformational Systems in Mining, 55–59. doi: 10.1201/b11586-11
  34. Lee, S. (2015). Marine gas hydrate – an indigenous resource of natural gas for Europe (MIGRATE): A marine gas hydrate project newly implemented in Europe. Journal of the Geological Society of Korea, 51 (5), 525. doi: 10.14770/jgsk.2015.51.5.525
  35. Kozhevnikov, A. A., Sudakov, A. K., Dreus, A. Yu., Lysenko, Ye. Ye. (2013). Study of heat transfer in cryogenic gravel filter during its transportation along a drillhole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 49–54.
  36. Mandryk, O., Pukish, A., Zelmanovych, A. (2017). Formation peculiarities of physical and chemical composition of highly mineralized edge water. Mining of Mineral Deposits, 11 (1), 72–79. doi: 10.15407/mining11.01.072
  37. Kalacheva, L. P., Shits, E. Yu., Fedorova, A. F. (2009). Issledovanie mekhanohimicheskih prevrashcheniy gidratov prirodnogo gaza. Neftekhimiya, 49 (4), 310–314.
  38. Kalacheva, L. P. (2013). Termodinamicheskiy analiz himicheskih prevrashcheniy komponentov prirodnogo gaza pri mekhanicheskoy obrabotke gazovyh gidratov. Tekhnicheskie nauki – ot teorii k praktike, 17-2, 37–41.
  39. Gamolin, O. E. (2003). The transformation of natural gas structure under the influence of mechanical energy. The Genesis of Petroleum and Gas, 74.
  40. Semyonov, M. E., Kalacheva, L. P., Shits, E. Y. (2014). Studying of features of processes of formation and mechano-chemical processing synthetic hydrates of natural ga. “Proceedings” of “OilGasScientificResearchProjects” Institute, SOCAR, 4, 40–45. doi: 10.5510/ogp20140400220
  41. Weitemeyer, K. A., Constable, S., Tréhu, A. M. (2011). A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon. Geophysical Journal International, 187 (1), 45–62. doi: 10.1111/j.1365-246x.2011.05105.x
  42. Vasyuk, B. N. (2015). Tendencii razvitiya tekhnologiy podvodnoy dobychi gaza iz zalezhey gazovyh gidratov. Porodorazrushayushchiy i metalloobrabatyvayushchiy instrument – tekhnika i tekhnologiya ego izgotovleniya i primeneniya, 18, 33–38.
  43. Bondarenko, V., Maksymova, E., Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Mining of Mineral Deposits, 115–119. doi: 10.1201/b16354-21
  44. Kalacheva, L. P., Rozhin, I. I., Fedorova, A. F. (2016). Izuchenie zavisimosti processov obrazovaniya i razlozheniya gidratov prirodnogo gaza ot himicheskoy prirody rastvorov elektrolitov, imitiruyushchih plastovye flyuidy. Mezhdunarodniy zhurnal prikladnyh i fundamental'nyh issledovaniy, 8-4, 565–569.
  45. Kalacheva, L. P., Rozhin, I. I. (2017). The influence of the chloride-calcium-type water composition on the properties of natural gas hydrates. Neftegazovaya Geologiya. Teoriya i Praktika, 12 (3). doi: 10.17353/2070-5379/25_2017
  46. Lang, X., Fan, S., Wang, Y. (2010). Intensification of methane and hydrogen storage in clathrate hydrate and future prospect. Journal of Natural Gas Chemistry, 19 (3), 203–209. doi: 10.1016/s1003-9953(09)60079-7
  47. Holzammer, C., Finckenstein, A., Will, S., Braeuer, A. S. (2016). How Sodium Chloride Salt Inhibits the Formation of CO2 Gas Hydrates. The Journal of Physical Chemistry B, 120 (9), 2452–2459. doi: 10.1021/acs.jpcb.5b12487
  48. Semenov, M. E., Shits, E. Yu. (2016). Izuchenie morfologii sinteticheskih gidratov prirodnogo gaza, poluchennyh iz l'da v ustanovkah zakrytogo tipa. Nauka-rastudent.ru, 10.
  49. Aregbe, A. G. (2017). Gas Hydrate – Properties, Formation and Benefits. Open Journal of Yangtze Oil and Gas, 02 (01), 27–44. doi: 10.4236/ojogas.2017.21003
  50. Giricheva, N. I., Ishchenko, A. A., Yusupov, V. I., Bagratashvili, V. N., Girichev, G. V. (2014). Struktura i energetika metanovyh gidratov. Izvestiya vysshih uchebnyh zavedeniy. Seriya: himiya i himicheskaya tekhnologiya, 57 (9), 3–9.
  51. Ovchynnikov, M., Ganushevych, K., Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Mining of Mineral Deposits, 203–205. doi: 10.1201/b16354-37
  52. Bondarenko, V., Sai, K., Ganushevych, K., Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015, 123–127. doi: 10.1201/b19901-23
  53. Bondarenko, V., Svietkina, O., Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 48–55. doi: 10.15587/1729-4061.2017.112313
  54. Kuzmenko, O. M., Petlovanyi, M. V. (2015). Substantiation the expediency of fine gridding of cementing material during backfill works. Mining of Mineral Deposits, 9 (2), 183–190. doi: 10.15407/mining09.02.183
  55. Svetkina, E. Yu., Petlevaniy, M. V. (2012). Zakonomernosti formirovaniya struktury i prochnosti tverdeyushchey zakladki pri raznoy dispersnosti vyazhushchego materiala. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, 37, 80–87.
  56. Opredelenie udel'noy poverhnosti poroshkov po soprotivleniyu fil'tracii razrezhennogo gaza. Metodika opredeleniya (1979). Moscow: AN SSSR, 6.
  57. Kuz’menko, O., Petlyovanyy, M., Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Mining of Mineral Deposits, 45–48. doi: 10.1201/b16354-10
  58. Korsakov, V. G., Shelomenceva, I. V., Yur'evskaya, I. M., Petrova, L. I. (1983). Issledovanie energeticheskih harakteristik i prognozirovanie fiziko-himicheskih i tekhnicheskih svoystv materialov. Napravlenniy sintez tverdyh veshchestv, 1, 158–174.
  59. Franchuk, V. P. (1995). Opredelenie temperatury v zone nagruzheniya pri vibroudarnom nagruzhenii. Teoriya i praktika processov izmel'cheniya i razdeleniya, 15–23.
  60. Franchuk, V. P. (2010). Vibracionnaya tekhnika v malyh proizvodstvah. Heotekhnichna mekhanika, 85, 290–296.
  61. Svetkina, O. (2013). Receipt of coagulant of water treatment from radio-active elements. Mining of Mineral Deposits, 227–230. doi: 10.1201/b16354-42
  62. Grauls, D. (2001). Gas hydrates: importance and applications in petroleum exploration. Marine and Petroleum Geology, 18 (4), 519–523. doi: 10.1016/s0264-8172(00)00075-1
  63. Ganushevych, K., Sai, K. (2013). Development of gas hydrate reservoir in the Black Sea. Young Petro, 8, 45–50.
  64. Sai, K. S. (2016). Obgruntuvannia parametriv tekhnolohiyi rozrobky hazohidratnykh pokladiv neodnoridnoi struktury. Dnipro: NHU, 203.
  65. Svetkina, Ye. Yu. (2013). Intensification of concentration process through minerals vibroactivation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 38–43.
  66. Svetkina, Y., Falshtyns’kyy, V., Dychkovs’kyy, R. (2010). Features of selectivity process of borehole underground coal gasification. New Techniques and Technologies in Mining, 219–222. doi: 10.1201/b11329-37
  67. Say, E. S., Svetkina, E. Yu. (2012). Izuchenie processov diffuzii pri razrabotke gazogidratnyh zalezhey. Materialy V mezhdunarodnoy konferencii «Shkola podzemnoy razrabotki», 201–206.

Downloads

Published

2018-02-19

How to Cite

Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1(6 (91), 17–26. https://doi.org/10.15587/1729-4061.2018.123885

Issue

Section

Technology organic and inorganic substances