DOI: https://doi.org/10.15587/1729-4061.2018.124085

Research and control of the purity of production hydrogen with a high degree of purification when applying the electrolysis method of production

Valeriy Nikolsky, Olga Oliynyk, Viktor Ved, Olena Gnatko, Andrii Pugach, Iuliia Bartashevska

Abstract


We conducted experimental studies aimed at determining the purity of hydrogen obtained at the electrolysis installation made by Hydrogen Technologies (Norway) at the pipe plant Centravis Production Ukraine in the city of Nikopol, Ukraine.

It was established that the determination of hydrogen purity and the degree of its purification from impurities (nitrogen) in microconcentrations involves two stages of measurements:

− research into the presence of nitrogen in the samples of production hydrogen in the microconcentrations of [[N2] 0.001−0.01 % (rough estimate);

− research into the presence of nitrogen in the samples of production hydrogen in the microconcentrations of [[N2] 0.001−0.01 % (fine assessment).

We determined that the purity of production hydrogen, obtained during research, was 99.9±0.1 %. A given value for purity does not match certification indicators for purity of production hydrogen claimed by the manufacturer to equal 99.9999 %.

We analyzed the reasons for the mismatch between the purity of obtained hydrogen and claimed characteristics. A detailed analysis revealed that the possible cause of high nitrogen concentration in hydrogen is the worn piston rings in the stage of compressor pistons, which causes the penetration of nitrogen in microconcentrations into production hydrogen. Piston rings in the compressor's stage were replaced. Repeated studies into purity of production hydrogen indicate that the purity of production hydrogen amounted to 99.99±0.01 %, which corresponds to the hydrogen of grade A.


Keywords


electrolysis installation; degree of purification; concentration of technical hydrogen; impurity; chromatography; digital filtering

References


Bičáková, O., Straka, P. (2012). Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy, 37 (16), 11563–11578. doi: 10.1016/j.ijhydene.2012.05.047

Tollefson, J. (2010). Hydrogen vehicles: Fuel of the future? Nature, 464 (7293), 1262–1264. doi: 10.1038/4641262a

Steele, B. C. H., Heinzel, A. (2010). Materials for fuel-cell technologies. Materials for Sustainable Energy, 224–231. doi: 10.1142/9789814317665_0031

Sloveckiy, D. I. (2010). Sverhchistyy vodorod. The Chemical Journal, 33–35.

Sloveckiy, D. I., Chistov, E. M., Roshan, N. R. (2004). Proizvodstvo chistogo vodoroda. Al'ternativnaya energetika i ekologiya, 1, 43–46.

Chaubey, R., Sahu, S., James, O. O., Maity, S. (2013). A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 23, 443–462. doi: 10.1016/j.rser.2013.02.019

Chisholm, G., Cronin, L. (2016). Hydrogen From Water Electrolysis. Storing Energy, 315–343. doi: 10.1016/b978-0-12-803440-8.00016-6

Vinogradov, D. V. (2006). Sovremennoe sostoyanie vodorodnoy energetiki. Voprosy atomnoy nauki i tekhniki, 1, 153–155.

Tong, A., Sridhar, D., Sun, Z., Kim, H. R., Zeng, L., Wang, F. et. al. (2013). Continuous high purity hydrogen generation from a syngas chemical looping 25kWth sub-pilot unit with 100% carbon capture. Fuel, 103, 495–505. doi: 10.1016/j.fuel.2012.06.088

Kothari, R., Buddhi, D., Sawhney, R. L. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews, 12 (2), 553–563. doi: 10.1016/j.rser.2006.07.012

Kim, M. (2004). Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study. International Journal of Hydrogen Energy, 29 (2), 187–193. doi: 10.1016/s0360-3199(03)00111-3

Ursua, A., Gandia, L. M., Sanchis, P. (2012). Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE, 100 (2), 410–426. doi: 10.1109/jproc.2011.2156750

Carmo, M., Fritz, D. L., Mergel, J., Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38 (12), 4901–4934. doi: 10.1016/j.ijhydene.2013.01.151

Rashid, M. M., Al Mesfer, M. K., Naseem, H., Danish, M. (2015). Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 4 (3), 80–93.

Lamy, C., Jaubert, T., Baranton, S., Coutanceau, C. (2014). Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode. Journal of Power Sources, 245, 927–936. doi: 10.1016/j.jpowsour.2013.07.028

Call, D., Logan, B. E. (2008). Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environmental Science & Technology, 42 (9), 3401–3406. doi: 10.1021/es8001822

Zeng, K., Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36 (3), 307–326. doi: 10.1016/j.pecs.2009.11.002

Grigoriev, S., Porembsky, V., Fateev, V. (2006). Pure hydrogen production by PEM electrolysis for hydrogen energy. International Journal of Hydrogen Energy, 31 (2), 171–175. doi: 10.1016/j.ijhydene.2005.04.038

Gahleitner, G. (2013). Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, 38 (5), 2039–2061. doi: 10.1016/j.ijhydene.2012.12.010

Nikol'skiy, V. E. (2011). Eksperimental'nye issledovaniya soderzhaniya azota v produkcionnom vodorode pri proizvodstve ego s vysokoy stepen'yu ochistki. Voprosy himii i himicheskoy tekhnologii, 5, 197–200.

Taranenko, Yu. K., Oleynik, O. Yu. (2017). Primenenie bayesovskih metodov pri obrabotke sil'no zashumlennyh rezul'tatov izmereniy. Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh, 1, 205–210.

Taranenko, Yu. K., Oleynik, O. Yu. (2017). Razrabotka modeli dlya resheniya preodoleniya apriornoy neopredelennosti. Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh, 2, 175–179.

GOST 3022-80. Vodorod tekhnicheskiy. Tekhnicheskie usloviya (1990). Moscow: Izd-vo standartov, 26.


GOST Style Citations


Bičáková O., Straka P. Production of hydrogen from renewable resources and its effectiveness // International Journal of Hydrogen Energy. 2012. Vol. 37, Issue 16. P. 11563–11578. doi: 10.1016/j.ijhydene.2012.05.047 

Tollefson J. Hydrogen vehicles: Fuel of the future? // Nature. 2010. Vol. 464, Issue 7293. P. 1262–1264. doi: 10.1038/4641262a 

Steele B. C. H., Heinzel A. Materials for fuel-cell technologies // Materials for Sustainable Energy. 2010. P. 224–231. doi: 10.1142/9789814317665_0031 

Sloveckiy D. I. Sverhchistyy vodorod // The Chemical Journal. 2010. P. 33–35.

Sloveckiy D. I., Chistov E. M., Roshan N. R. Proizvodstvo chistogo vodoroda // Al'ternativnaya energetika i ekologiya. 2004. Issue 1. P. 43–46.

A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources / Chaubey R., Sahu S., James O. O., Maity S. // Renewable and Sustainable Energy Reviews. 2013. Vol. 23. P. 443–462. doi: 10.1016/j.rser.2013.02.019 

Chisholm G., Cronin L. Hydrogen From Water Electrolysis // Storing Energy. 2016. P. 315–343. doi: 10.1016/b978-0-12-803440-8.00016-6 

Vinogradov D. V. Sovremennoe sostoyanie vodorodnoy energetiki // Voprosy atomnoy nauki i tekhniki. 2006. Issue 1. P. 153–155.

Continuous high purity hydrogen generation from a syngas chemical looping 25kWth sub-pilot unit with 100% carbon capture / Tong A., Sridhar D., Sun Z., Kim H. R., Zeng L., Wang F. et. al. // Fuel. 2013. Vol. 103. P. 495–505. doi: 10.1016/j.fuel.2012.06.088 

Kothari R., Buddhi D., Sawhney R. L. Comparison of environmental and economic aspects of various hydrogen production methods // Renewable and Sustainable Energy Reviews. 2008. Vol. 12, Issue 2. P. 553–563. doi: 10.1016/j.rser.2006.07.012 

Kim M. Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study // International Journal of Hydrogen Energy. 2004. Vol. 29, Issue 2. P. 187–193. doi: 10.1016/s0360-3199(03)00111-3 

Ursua A., Gandia L. M., Sanchis P. Hydrogen Production From Water Electrolysis: Current Status and Future Trends // Proceedings of the IEEE. 2012. Vol. 100, Issue 2. P. 410–426. doi: 10.1109/jproc.2011.2156750 

A comprehensive review on PEM water electrolysis / Carmo M., Fritz D. L., Mergel J., Stolten D. // International Journal of Hydrogen Energy. 2013. Vol. 38, Issue 12. P. 4901–4934. doi: 10.1016/j.ijhydene.2013.01.151 

Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis / Rashid M. M., Al Mesfer M. K., Naseem H., Danish M. // International Journal of Engineering and Advanced Technology. 2015. Vol. 4, Issue 3. P. 80–93.

Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode / Lamy C., Jaubert T., Baranton S., Coutanceau C. // Journal of Power Sources. 2014. Vol. 245. P. 927–936. doi: 10.1016/j.jpowsour.2013.07.028 

Call D., Logan B. E. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane // Environmental Science & Technology. 2008. Vol. 42, Issue 9. P. 3401–3406. doi: 10.1021/es8001822 

Zeng K., Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications // Progress in Energy and Combustion Science. 2010. Vol. 36, Issue 3. P. 307–326. doi: 10.1016/j.pecs.2009.11.002 

Grigoriev S., Porembsky V., Fateev V. Pure hydrogen production by PEM electrolysis for hydrogen energy // International Journal of Hydrogen Energy. 2006. Vol. 31, Issue 2. P. 171–175. doi: 10.1016/j.ijhydene.2005.04.038 

Gahleitner G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications // International Journal of Hydrogen Energy. 2013. Vol. 38, Issue 5. P. 2039–2061. doi: 10.1016/j.ijhydene.2012.12.010 

Nikol'skiy V. E. Eksperimental'nye issledovaniya soderzhaniya azota v produkcionnom vodorode pri proizvodstve ego s vysokoy stepen'yu ochistki // Voprosy himii i himicheskoy tekhnologii. 2011. Issue 5. P. 197–200.

Taranenko Yu. K., Oleynik O. Yu. Primenenie bayesovskih metodov pri obrabotke sil'no zashumlennyh rezul'tatov izmereniy // Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh. 2017. Vol. 1. P. 205–210.

Taranenko Yu. K., Oleynik O. Yu. Razrabotka modeli dlya resheniya preodoleniya apriornoy neopredelennosti // Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh. 2017. Vol. 2. P. 175–179.

GOST 3022-80. Vodorod tekhnicheskiy. Tekhnicheskie usloviya. Moscow: Izd-vo standartov, 1990. 26 p.







Copyright (c) 2018 Valeriy Nikolsky, Olga Oliynyk, Viktor Ved, Olena Gnatko, Andrii Pugach, Iuliia Bartashevska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061