Investigation of the work of the road construction at the sites by pipe drenes from materials of different origin

Оlena Slavinska, Vyacheslav Savenko, Andrey Bubela, Andrey Yaremov

Abstract


The paper reports research into operation of road structures with tubular drains made from materials with different physical-mechanical properties, which makes it possible to identify basic factors that affect operational conditions under the influence of own mass and the rated load from rolling stock in accordance with the building norms of Ukraine. Non-standard road structures were simulated in the SCAD environment. The results of numerical simulation allowed us to derive diagrams of normal stresses and deformations of structural layers in road surfacing, as well as in the body of tubular drains. The calculations were performed both for the standard and the actual compaction of material used as a trench backfill, for a PVC pipe and a concrete pipe.

Consideration of tubular openings in solid layered road structures made it possible to estimate the actual stressed-deformed state at the sections of roads that require control over a water-heat mode. The proposed method of study enables the selection of individual design-structural parameters for drainages of shallow laying for general-purpose public roads of different technical categories as opposed to the standard approaches implied by the building regulations of Ukraine.


Keywords


road structure; drainage structure of shallow laying; tubular drain; polyvinylchloride pipe; concrete pipe

Full Text:

PDF

References


Drainage manual (2018). Tallahassee, Florida, 123. Available at: http://www.fdot.gov/roadway/drainage/files/drainagemanual.pdf

Abou Rjeily, Y., Abbas, O., Sadek, M., Shahrour, I., Hage Chehade, F. (2017). Flood forecasting within urban drainage systems using NARX neural network. Water Science and Technology, 76 (9), 2401–2412. doi: 10.2166/wst.2017.409

Tiğrek, Ş., Sipahi, S. O. (2011). Rehabilitation of storm water collection systems of urban environment using the small roads as conveyance channels. International Journal of Environmental Science and Technology, 9 (1), 95–103. doi: 10.1007/s13762-011-0002-x

Mukherjee, D. (2014). Highway Surface Drainage System & Problems of Water Logging In Road Section. The International Journal Of Engineering And Science (IJES), 3 (11), 44–51. Available at: http://www.theijes.com/papers/v3-i11/Version-1/G031101044051.pdf

Slavinska, O. S., Styozhka, V. V. (2016). Optimization of engineering solutions: the case of comparison of comparison of shallow drainage constructions. Avtomobilni dorohy i dorozhnie budivnytstvo, 98, 228–237. Available at: http://publications.ntu.edu.ua/avtodorogi_i_stroitelstvo/98/228-237.pdf

Stormwater drainage manual. Available at: https://www.dsd.gov.hk/EN/Files/Technical_Manual/technical_manuals/Stormwater_Drainage_Manual_Eurocodes.pdf

Allen, D., Arthur, S., Haynes, H., Olive, V. (2016). Multiple rainfall event pollution transport by sustainable drainage systems: the fate of fine sediment pollution. International Journal of Environmental Science and Technology, 14 (3), 639–652. doi: 10.1007/s13762-016-1177-y

Latvala, J., Nurmikolu, A., Luomala, H. (2016). Problems with Railway Track Drainage in Finland. Procedia Engineering, 143, 1051–1058. doi: 10.1016/j.proeng.2016.06.098

Sandberg, U., Kragh, J., Goubert, L. et. al. (2011). Optimization of Thin Asphalt Layers – State-of-the-Art Review. Swedish National Road and Transport Research Institute (VTI), Danish Road Institute (DRI) & Belgian Road Research Centre (BRRC).

Sangghaleh, A., Pan, E., Green, R., Wang, R., Liu, X., Cai, Y. (2013). Backcalculation of pavement layer elastic modulus and thickness with measurement errors. International Journal of Pavement Engineering, 15 (6), 521–531. doi: 10.1080/10298436.2013.786078

Gopalakrishnan, K., Papadopoulos, H. (2011). Reliable pavement backcalculation with confidence estimation. Scientia Iranica, 18 (6), 1214–1221. doi: 10.1016/j.scient.2011.11.018

Cao, Z., Han, J., Xu, C., Khatri, D. K., Corey, R., Cai, Y. (2016). Road surface permanent deformations with a shallowly buried steel-reinforced high-density polyethylene pipe under cyclic loading. Geotextiles and Geomembranes, 44 (1), 28–38. doi: 10.1016/j.geotexmem.2015.06.009

Bishop, R. R. Retention of Pipe Stiffness for Polyvinyl Chloride (PVC) Pipe Samples Exposed to Various Environments and Constant Strain. Buried Plastic Pipe Technology. doi: 10.1520/stp42110s

Polyvinyl Chloride (PVC) Pipe (2013). Pipelines for Water Conveyance and Drainage, 35–46. doi: 10.1061/9780784412749.ch05

Talakh, S. M., Dubyk, O. M., Lysnytska, K. M. (2017). Numerical calculation of the stress-strain state of non-rigid pavements, renovated by cold recycling technology. ScienceRise, 1 (2 (30)), 31–38. doi: 10.15587/2313-8416.2017.91111

Pavlenko, N. V. (2014). Osoblyvosti rozrakhunku nezhorstkykh dorozhnikh odiahiv za kryteriyamy mitsnosti. Naukovi notatky, 45, 412–416.

Shmyh, R. A., Dobrianskyi, I. M.; Shmyh, R. A. (Ed.) (2015). Rozrakhunok budivelnykh konstruktsiyi v obchysliuvalnomu kompleksi SCAD. Lviv: Liha Pres, 80. Available at: http://shron1.chtyvo.org.ua/Shmyh_Roman/Rozrakhunok_budivelnykh_konstruktsii_v_obchysliuvalnomu_kompleksi_SCAD.pdf

Shvec, V. B., Shapoval, V. G., Petrenko, V. D. et. al. (2008). Fundamenty promyshlennyh, grazhdanskih i transportnyh sooruzheniy na sloistyh gruntovyh osnovaniyah. Dnepropetrovsk: Novaya ideologiya, 274.

Gorodeckiy, A. S., Zavorickiy, V. I., Lantuh-Lyashchenko, A. I., Rasskazov, A. O. (1981). Metod konechnyh elementov v proektirovanii transportnyh sooruzheniy. Moscow: Transport, 144.

Bugrov, A. K., Zarhi, A. A. (1978). Nekotorye rezul'taty resheniya smeshannyh zadach teoriy uprugosti i plastichnosti gruntov osnovaniy. Osnovaniya, fundamenty i mekhanika gruntov, 3, 35–39.

Pavliuk, D. O., Pavliuk, V. V., Lebediev, O. S., Bulakh, Ye. O., Peristyi, O. O. Nachipne obladnannia dlia otsinky mitsnosti i deformatyvnosti dorozhnikh konstruktsii ta gruntovykh osnov. Available at: http://road-laboratory.com/files/%E2%84%962.pdf

Piskunov, V. H., Sipetov, V. S., Shevchenko, V. D., Fedorenko, Yu. M.; Piskunov, V. H. (Ed.) (1995). Opir materialiv z osnovamy teoriyi pruzhnosti y plastychnosti. Ch. 2, Kn. 3. Opir dvo- i tryvymirnykh til. Kyiv: Vyshcha shkola, 273.


GOST Style Citations


Drainage manual. Tallahassee, Florida, 2018. 123 p. URL: http://www.fdot.gov/roadway/drainage/files/drainagemanual.pdf

Flood forecasting within urban drainage systems using NARX neural network / Abou Rjeily Y., Abbas O., Sadek M., Shahrour I., Hage Chehade F. // Water Science and Technology. 2017. Vol. 76, Issue 9. P. 2401–2412. doi: 10.2166/wst.2017.409 

Tiğrek Ş., Sipahi S. O. Rehabilitation of storm water collection systems of urban environment using the small roads as conveyance channels // International Journal of Environmental Science and Technology. 2011. Vol. 9, Issue 1. P. 95–103. doi: 10.1007/s13762-011-0002-x 

Mukherjee D. Highway Surface Drainage System & Problems of Water Logging In Road Section // The International Journal Of Engineering And Science (IJES). 2014. Vol. 3, Issue 11. P. 44–51. URL: http://www.theijes.com/papers/v3-i11/Version-1/G031101044051.pdf

Slavinska O. S., Styozhka V. V. Optimization of engineering solutions: the case of comparison of comparison of shallow drainage constructions // Avtomobilni dorohy i dorozhnie budivnytstvo. 2016. Issue 98. P. 228–237. URL: http://publications.ntu.edu.ua/avtodorogi_i_stroitelstvo/98/228-237.pdf

Stormwater drainage manual. URL: https://www.dsd.gov.hk/EN/Files/Technical_Manual/technical_manuals/Stormwater_Drainage_Manual_Eurocodes.pdf

Multiple rainfall event pollution transport by sustainable drainage systems: the fate of fine sediment pollution / Allen D., Arthur S., Haynes H., Olive V. // International Journal of Environmental Science and Technology. 2016. Vol. 14, Issue 3. P. 639–652. doi: 10.1007/s13762-016-1177-y 

Latvala J., Nurmikolu A., Luomala H. Problems with Railway Track Drainage in Finland // Procedia Engineering. 2016. Vol. 143. P. 1051–1058. doi: 10.1016/j.proeng.2016.06.098 

Optimization of Thin Asphalt Layers – State-of-the-Art Review / Sandberg U., Kragh J., Goubert L. et. al. Swedish National Road and Transport Research Institute (VTI), Danish Road Institute (DRI) & Belgian Road Research Centre (BRRC), 2011.

Backcalculation of pavement layer elastic modulus and thickness with measurement errors / Sangghaleh A., Pan E., Green R., Wang R., Liu X., Cai Y. // International Journal of Pavement Engineering. 2013. Vol. 15, Issue 6. P. 521–531. doi: 10.1080/10298436.2013.786078 

Gopalakrishnan K., Papadopoulos H. Reliable pavement backcalculation with confidence estimation // Scientia Iranica. 2011. Vol. 18, Issue 6. P. 1214–1221. doi: 10.1016/j.scient.2011.11.018 

Road surface permanent deformations with a shallowly buried steel-reinforced high-density polyethylene pipe under cyclic loading / Cao Z., Han J., Xu C., Khatri D. K., Corey R., Cai Y. // Geotextiles and Geomembranes. 2016. Vol. 44, Issue 1. P. 28–38. doi: 10.1016/j.geotexmem.2015.06.009 

Bishop R. R. Retention of Pipe Stiffness for Polyvinyl Chloride (PVC) Pipe Samples Exposed to Various Environments and Constant Strain. Buried Plastic Pipe Technology. doi: 10.1520/stp42110s 

Polyvinyl Chloride (PVC) Pipe // Pipelines for Water Conveyance and Drainage. 2013. P. 35–46. doi: 10.1061/9780784412749.ch05 

Talakh S. M., Dubyk O. M., Lysnytska K. M. Numerical calculation of the stress-strain state of non-rigid pavements, renovated by cold recycling technology // ScienceRise. 2017. Vol. 1, Issue 2 (30). P. 31–38. doi: 10.15587/2313-8416.2017.91111 

Pavlenko N. V. Osoblyvosti rozrakhunku nezhorstkykh dorozhnikh odiahiv za kryteriyamy mitsnosti // Naukovi notatky. 2014. Issue 45. P. 412–416.

Shmyh R. A., Dobrianskyi I. M. Rozrakhunok budivelnykh konstruktsiyi v obchysliuvalnomu kompleksi SCAD: navch. pos. / R. A. Shmyh (Ed.). Lviv: Liha Pres, 2015. 80 p. URL: http://shron1.chtyvo.org.ua/Shmyh_Roman/Rozrakhunok_budivelnykh_konstruktsii_v_obchysliuvalnomu_kompleksi_SCAD.pdf

Fundamenty promyshlennyh, grazhdanskih i transportnyh sooruzheniy na sloistyh gruntovyh osnovaniyah: monografiya / Shvec V. B., Shapoval V. G., Petrenko V. D. et. al. Dnepropetrovsk: Novaya ideologiya, 2008. 274 p.

Metod konechnyh elementov v proektirovanii transportnyh sooruzheniy / Gorodeckiy A. S., Zavorickiy V. I., Lantuh-Lyashchenko A. I., Rasskazov A. O. Moscow: Transport, 1981. 144 p.

Bugrov A. K., Zarhi A. A. Nekotorye rezul'taty resheniya smeshannyh zadach teoriy uprugosti i plastichnosti gruntov osnovaniy // Osnovaniya, fundamenty i mekhanika gruntov. 1978. Issue 3. P. 35–39.

Nachipne obladnannia dlia otsinky mitsnosti i deformatyvnosti dorozhnikh konstruktsii ta gruntovykh osnov / Pavliuk D. O., Pavliuk V. V., Lebediev O. S., Bulakh Ye. O., Peristyi O. O. // URL: http://road-laboratory.com/files/%E2%84%962.pdf

Opir materialiv z osnovamy teoriyi pruzhnosti y plastychnosti. Ch. 2, Kn. 3. Opir dvo- i tryvymirnykh til: pidruchnyk / Piskunov V. H., Sipetov V. S., Shevchenko V. D., Fedorenko Yu. M.; V. H. Piskunov (Ed.). Kyiv: Vyshcha shkola, 1995. 273 p.



DOI: https://doi.org/10.15587/1729-4061.2018.126512

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Оlena Slavinska, Vyacheslav Savenko, Andrey Bubela, Andrey Yaremov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061