Investigation of the work of the road construction at the sites by pipe drenes from materials of different origin

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126512

Keywords:

road structure, drainage structure of shallow laying, tubular drain, polyvinylchloride pipe, concrete pipe

Abstract

The paper reports research into operation of road structures with tubular drains made from materials with different physical-mechanical properties, which makes it possible to identify basic factors that affect operational conditions under the influence of own mass and the rated load from rolling stock in accordance with the building norms of Ukraine. Non-standard road structures were simulated in the SCAD environment. The results of numerical simulation allowed us to derive diagrams of normal stresses and deformations of structural layers in road surfacing, as well as in the body of tubular drains. The calculations were performed both for the standard and the actual compaction of material used as a trench backfill, for a PVC pipe and a concrete pipe.

Consideration of tubular openings in solid layered road structures made it possible to estimate the actual stressed-deformed state at the sections of roads that require control over a water-heat mode. The proposed method of study enables the selection of individual design-structural parameters for drainages of shallow laying for general-purpose public roads of different technical categories as opposed to the standard approaches implied by the building regulations of Ukraine.

Author Biographies

Оlena Slavinska, National Transport University Omelianovycha-Pavlenka str., 1, Kyiv, Ukraine, 01010

Doctor of Technical Sciences, Professor

Department of Transport Construction and Property Management

Vyacheslav Savenko, National Transport University Omelianovycha-Pavlenka str., 1, Kyiv, Ukraine, 01010

Doctor of Technical Sciences, Professor, Head of Department

Department of Transport Construction and Property Management

Andrey Bubela, National Transport University Omelianovycha-Pavlenka str., 1, Kyiv, Ukraine, 01010

PhD, Associate Professor

Department of Transport Construction and Property Management

Andrey Yaremov, National Transport University Omelianovycha-Pavlenka str., 1, Kyiv, Ukraine, 01010

Postgraduate student

Department of Transport Construction and Property Management

References

  1. Drainage manual (2018). Tallahassee, Florida, 123. Available at: http://www.fdot.gov/roadway/drainage/files/drainagemanual.pdf
  2. Abou Rjeily, Y., Abbas, O., Sadek, M., Shahrour, I., Hage Chehade, F. (2017). Flood forecasting within urban drainage systems using NARX neural network. Water Science and Technology, 76 (9), 2401–2412. doi: 10.2166/wst.2017.409
  3. Tiğrek, Ş., Sipahi, S. O. (2011). Rehabilitation of storm water collection systems of urban environment using the small roads as conveyance channels. International Journal of Environmental Science and Technology, 9 (1), 95–103. doi: 10.1007/s13762-011-0002-x
  4. Mukherjee, D. (2014). Highway Surface Drainage System & Problems of Water Logging In Road Section. The International Journal Of Engineering And Science (IJES), 3 (11), 44–51. Available at: http://www.theijes.com/papers/v3-i11/Version-1/G031101044051.pdf
  5. Slavinska, O. S., Styozhka, V. V. (2016). Optimization of engineering solutions: the case of comparison of comparison of shallow drainage constructions. Avtomobilni dorohy i dorozhnie budivnytstvo, 98, 228–237. Available at: http://publications.ntu.edu.ua/avtodorogi_i_stroitelstvo/98/228-237.pdf
  6. Stormwater drainage manual. Available at: https://www.dsd.gov.hk/EN/Files/Technical_Manual/technical_manuals/Stormwater_Drainage_Manual_Eurocodes.pdf
  7. Allen, D., Arthur, S., Haynes, H., Olive, V. (2016). Multiple rainfall event pollution transport by sustainable drainage systems: the fate of fine sediment pollution. International Journal of Environmental Science and Technology, 14 (3), 639–652. doi: 10.1007/s13762-016-1177-y
  8. Latvala, J., Nurmikolu, A., Luomala, H. (2016). Problems with Railway Track Drainage in Finland. Procedia Engineering, 143, 1051–1058. doi: 10.1016/j.proeng.2016.06.098
  9. Sandberg, U., Kragh, J., Goubert, L. et. al. (2011). Optimization of Thin Asphalt Layers – State-of-the-Art Review. Swedish National Road and Transport Research Institute (VTI), Danish Road Institute (DRI) & Belgian Road Research Centre (BRRC).
  10. Sangghaleh, A., Pan, E., Green, R., Wang, R., Liu, X., Cai, Y. (2013). Backcalculation of pavement layer elastic modulus and thickness with measurement errors. International Journal of Pavement Engineering, 15 (6), 521–531. doi: 10.1080/10298436.2013.786078
  11. Gopalakrishnan, K., Papadopoulos, H. (2011). Reliable pavement backcalculation with confidence estimation. Scientia Iranica, 18 (6), 1214–1221. doi: 10.1016/j.scient.2011.11.018
  12. Cao, Z., Han, J., Xu, C., Khatri, D. K., Corey, R., Cai, Y. (2016). Road surface permanent deformations with a shallowly buried steel-reinforced high-density polyethylene pipe under cyclic loading. Geotextiles and Geomembranes, 44 (1), 28–38. doi: 10.1016/j.geotexmem.2015.06.009
  13. Bishop, R. R. Retention of Pipe Stiffness for Polyvinyl Chloride (PVC) Pipe Samples Exposed to Various Environments and Constant Strain. Buried Plastic Pipe Technology. doi: 10.1520/stp42110s
  14. Polyvinyl Chloride (PVC) Pipe (2013). Pipelines for Water Conveyance and Drainage, 35–46. doi: 10.1061/9780784412749.ch05
  15. Talakh, S. M., Dubyk, O. M., Lysnytska, K. M. (2017). Numerical calculation of the stress-strain state of non-rigid pavements, renovated by cold recycling technology. ScienceRise, 1 (2 (30)), 31–38. doi: 10.15587/2313-8416.2017.91111
  16. Pavlenko, N. V. (2014). Osoblyvosti rozrakhunku nezhorstkykh dorozhnikh odiahiv za kryteriyamy mitsnosti. Naukovi notatky, 45, 412–416.
  17. Shmyh, R. A., Dobrianskyi, I. M.; Shmyh, R. A. (Ed.) (2015). Rozrakhunok budivelnykh konstruktsiyi v obchysliuvalnomu kompleksi SCAD. Lviv: Liha Pres, 80. Available at: http://shron1.chtyvo.org.ua/Shmyh_Roman/Rozrakhunok_budivelnykh_konstruktsii_v_obchysliuvalnomu_kompleksi_SCAD.pdf
  18. Shvec, V. B., Shapoval, V. G., Petrenko, V. D. et. al. (2008). Fundamenty promyshlennyh, grazhdanskih i transportnyh sooruzheniy na sloistyh gruntovyh osnovaniyah. Dnepropetrovsk: Novaya ideologiya, 274.
  19. Gorodeckiy, A. S., Zavorickiy, V. I., Lantuh-Lyashchenko, A. I., Rasskazov, A. O. (1981). Metod konechnyh elementov v proektirovanii transportnyh sooruzheniy. Moscow: Transport, 144.
  20. Bugrov, A. K., Zarhi, A. A. (1978). Nekotorye rezul'taty resheniya smeshannyh zadach teoriy uprugosti i plastichnosti gruntov osnovaniy. Osnovaniya, fundamenty i mekhanika gruntov, 3, 35–39.
  21. Pavliuk, D. O., Pavliuk, V. V., Lebediev, O. S., Bulakh, Ye. O., Peristyi, O. O. Nachipne obladnannia dlia otsinky mitsnosti i deformatyvnosti dorozhnikh konstruktsii ta gruntovykh osnov. Available at: http://road-laboratory.com/files/%E2%84%962.pdf
  22. Piskunov, V. H., Sipetov, V. S., Shevchenko, V. D., Fedorenko, Yu. M.; Piskunov, V. H. (Ed.) (1995). Opir materialiv z osnovamy teoriyi pruzhnosti y plastychnosti. Ch. 2, Kn. 3. Opir dvo- i tryvymirnykh til. Kyiv: Vyshcha shkola, 273.

Downloads

Published

2018-04-16

How to Cite

Slavinska О., Savenko, V., Bubela, A., & Yaremov, A. (2018). Investigation of the work of the road construction at the sites by pipe drenes from materials of different origin. Eastern-European Journal of Enterprise Technologies, 2(7 (92), 18–26. https://doi.org/10.15587/1729-4061.2018.126512

Issue

Section

Applied mechanics