Establishing the dependence of pollutant concentration on operational conditions at facilities of an oil­and­gas complex

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126624

Keywords:

environmental safety, gas pumping unit, environmental pollution, atmosphere, oil-and-gas complex

Abstract

Environmental impact of gas burning parameters during operation of the gas pumping units of compressor stationswas studied. Simulation of the NO2, NO and CO dispersion zone at the excess air coefficients of 1.0; 1.1; 1.3; 1.6 was made using the Eol-Plus, v. 5.23 software package. Adjusted dimensions of the sanitaryprotective zone were established for various values of the excess air coefficient and according to the local windrose. It was determined that the smallest distance of emission dispersionwas at the value of α=1.00 and the largest distance was at α=1.60. It has been established that withincreases in the coefficient α, the near-earth concentrations of nitrogen oxides grow and those of carbon monoxide fall. It was found that concentrations of nitrogen oxides are minimal during gas combustion in the GB chambers at α=1...1.1. Recommendations for raising the level of environmental safety of the gas transportation facilities and a method of purifying exhaust gases from CO in operation of compressor stations on main gas pipelines were proposed. The method consists in an additional supply of ionized air in exhaust gases.

Author Biographies

Teodoziia Yatsyshyn, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of ecology

Yulia Mykhailiuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of ecology

Mykhailo Liakh, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Professor

Department of Oil and Gas Equipment

Irina Mykhailiuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Departmen of informatics

Vasyl Savyk, Poltava National Technical Yuri Kondratyuk University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

PhD, Associate Professor

Department of the equipment of oil and gas fields

Igor Dobrovolskyi, PJSC "Ukrgazvydobutok" Sumska str., 43b, Kharkiv, Ukraine, 61058

Chief Mechanic

References

  1. Shkitsa, L., Yatsyshyn, T. (2013). Computer-aided chart of ecological safety evaluation of atmospheric pollution by drilling fluid steams. Scientific bulletin of North University of Baja Mare. Series D. Mining Mineral Processing Non-ferrous Metallurgy Geology and Environmental Engineering, 27 (1), 131–138.
  2. Shkitsa, L., Yatsyshyn, T., Lyakh, M., Sydorenko, O. (2016). Means of atmospheric air pollution reduction during drilling wells. IOP Conference Series: Materials Science and Engineering, 144, 012009. doi: 10.1088/1757-899x/144/1/012009
  3. Shkitsa, L. Ye., Yatsyshyn, T. M., Sydorenko, O. I. (2017). Metody pokrashchennia yakosti atmosfernoho povitria pid chas burinnia naftohazovykh sverdlovyn. Naftohazova haluz Ukrainy, 5, 42–45.
  4. Leshchenko, I. Ch. (2010). Vprovadzhennia suchasnykh tekhnolohiy u hazotransportniy systemi Ukrainy dlia zmenshennia vykydiv shkidlyvykh rechovyn v atmosferu. Problemy zahalnoi enerhetyky, 3 (23), 41–47.
  5. Hovdiak, R. M. (2012). Shliakhy pidvyshchennia enerhoekolohichnoi bezpeky ta efektyvnosti roboty mahistralnykh hazoprovodiv Ukrainy. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 1 (42). Available at: http://rrngr.nung.edu.ua/sites/default/files/journals/042/12grmmgu.pdf
  6. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (2008). Official Journal of the European Union, L 152/1.
  7. Southwestern Pennsylvania Marcellus Shale Short-Term Ambient Air Sampling Report (2010). Pennsylvania Department of Environmental Protection, 52. Available at: http://www.dep.state.pa.us/dep/deputate/airwaste/aq/aqm/docs/Marcellus_SW_11-01-10.pdf
  8. Mykhailiuk, Yu. D. (2014). Ekolohichnyi stan terytoriy kompresornykh stantsiy. Naukovyi visnyk NLTU Ukrainy, 24.2, 119–125.
  9. Ming, T., de_Richter, R., Shen, S., Caillol, S. (2016). Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies. Environmental Science and Pollution Research, 23 (7), 6119–6138. doi: 10.1007/s11356-016-6103-9
  10. Samsonov, R. О. (2007). Geological risk management by optimizing the compressor plant operation at the natural gas main pipelines. Oil and Gas Business. Available at: http://www.ogbus.ru/eng/authors/SamsonovRO/SamsonovRO_2e.pdf
  11. Wellenius, G. A. (2012). Ambient Air Pollution and the Risk of Acute Ischemic Stroke. Archives of Internal Medicine, 172 (3), 229. doi: 10.1001/archinternmed.2011.732
  12. Primer on Short-Lived Climate Pollutants (2013). Institute for Governance & Sustainable Development, 147. Available at: http://www.igsd.org/documents/PrimeronShort-LivedClimatePollutantsNovemberElectronicversion.pdf
  13. Kuznietsov, S. I. (2003). Pat. 62855 UA. Sposib ochyshchennia vidkhidnykh haziv kotelnykh vid oksydu vuhletsiu ta prystriy dlia yoho realizatsiy. No. u2003098250; declareted: 04.09.2003; published: 15.12.2003, Bul. No. 12.
  14. Yahoda, P. A., Mykhailiv, V. I., Kostiv, V. V. (2007). Pobudova optymalnoi modeli funktsii mnozhynnoi rehresiyi dlia vyznachennia velychyn vykydiv NOx, shcho utvoriuiutsia v protsesi roboty HPA zalezhno vid vytraty palyvnoho hazu ta koefitsienta nadlyshku povitria. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 2 (23).
  15. Varlamov, G. B., Priymak, E. A. (2013). Actual characteristics of compressor station equipment and optimization of loading main gas pipeline. Eastern-European Journal of Enterprise Technologies, 5 (8 (65)), 9–13. Available at: http://journals.uran.ua/eejet/article/view/18119/15867
  16. Mandryk, O. M., Tyrlych, V. V., Mykhailiuk, Yu. D. (2015). Bahatofaktornyi analiz kompleksnoho ekoloho tekhnichnoho obstezhennia hazoperekachuvalnoho ahrehatu na riznykh tekhnolohichnykh rezhymakh roboty. Naftohazova enerhetyka, 2 (24), 44–52.
  17. Metodika rascheta koncentraciy v atmosfernom vozduhe vrednyh veshchestv, soderzhashchihsya v vybrosah predpriyatiy, OND–86 (1987). Leningrad: Gidrpometeoizdat, 94.
  18. Mykhailiuk, Yu. D. (2014). Mekhanizm i faktory utvorennia oksydiv nitrohenu i karbonu pry zghoranni pryrodnikh haziv. Naukovi notatky, 44, 179–183. Available at: http://nbuv.gov.ua/UJRN/Nn_2014_44_30
  19. Mykhailiuk, Yu. D. (2014). Pat. No. 102157 UA. Sposib ochystky vidkhidnykh haziv kompresornykh ustanovok vid SO. No. u201413739; declareted: 22.12.2014; published: 26.10.2015, Bul. No. 20.
  20. Levchenko, O. V. (2000). Vykydy toksychnykh rechovyn v atmosferu z hazoturbinnykh ustanovok. Naftova i hazova promyslovist, 1, 61–63.
  21. Levchenko, O. V. (2001). Ochyshchennia vykhlopnykh haziv vid oksydiv vuhletsiu. Naftova i hazova promyslovist, 6, 62–66.
  22. Lyubchik, G. N., Romanov, V. V., Vancovskiy, V. G., Vilkul, V. V. (2009). Rezul'taty ispytaniy kamery sgoraniya GTD DG 80 s nizkoemissionnym gorelochnym ustroystvom na baze trubchatyh moduley. Eastern-European Journal of Enterprise Technologies, 4 (6 (40)), 13–18. Available at: http://journals.uran.ua/eejet/article/view/22016/19523

Downloads

Published

2018-03-22

How to Cite

Yatsyshyn, T., Mykhailiuk, Y., Liakh, M., Mykhailiuk, I., Savyk, V., & Dobrovolskyi, I. (2018). Establishing the dependence of pollutant concentration on operational conditions at facilities of an oil­and­gas complex. Eastern-European Journal of Enterprise Technologies, 2(10 (92), 56–63. https://doi.org/10.15587/1729-4061.2018.126624