Geometrical modeling of the shape of a multilink rod structure in weightlessness under the influence of pulses on the end points of its links

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.126693

Keywords:

rod structure, process of unfolding in space, multi-link rod structure, Lagrange equation of second kind

Abstract

We have examined a geometrical model of the new technique for unfolding a multilink rod structure under conditions of weightlessness. Displacement of elements of the links occurs due to the action of pulses from pyrotechnic jet engines to the end points of links in a structure. A description of the dynamics of the obtained inertial unfolding of a rod structure is performed using the Lagrange equation of second kind, built using the kinetic energy of an oscillatory system only.

The relevance of the chosen subject is indicated by the need to choose and explore a possible engine of the process of unfolding a rod structure of the pendulum type. It is proposed to use pulse pyrotechnic jet engines installed at the end points of links in a rod structure. They are lighter and cheaper as compared, for example, with electric motors or spring devices. This is economically feasible when the process of unfolding a structure in orbit is scheduled to run only once.

We have analyzed manifestations of possible errors in the magnitudes of pulses on the geometrical shape of the arrangement of links in a rod structure, acquired as a result of its unfolding. It is shown at the graphical level that the error may vary within one percent of the estimated value of the magnitude of a pulse. To determine the moment of fixing the elements of a multilink structure in the preset unfolded state, it is proposed to use a «stop-code». It is a series of numbers, which, by using functions of the generalized coordinates of the Lagrange equation of second kind, define the current values of angles between the elements of a rod structure.

Results are intended for geometrical modeling of the unfolding of large-size structures under conditions of weightlessness, for example, power frames for solar mirrors, or cosmic antennae, as well as other large-scale orbital facilities.

Author Biographies

Leonid Kutsenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Engineering and Rescue Technology

Oleg Semkiv, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Vice-Rector

Department of prevention activities and monitoring

Leonid Zapolskiy, Ukrainian Research Institute of Civil Defense Rybalska str., 18, Kyiv, Ukraine, 01011

PhD, Senior Researcher

Department of Scientific and organizational

Olga Shoman, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Geometrical Modeling and Computer Graphics

Nelli Ismailova, Military Academy Fontanska doroha str., 10, Odessa, Ukraine, 65009

Doctor of Technical Sciences, Associate ProfessorDepartment of Engineering Mechanics

Serhii Vasyliev, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Engineering and Rescue Technology

Irina Adashevska, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Geometrical Modeling and Computer Graphics

Volodymyr Danylenko, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Associate Professor

Department of Engineering and Computer Graphics

Andrey Pobidash, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Researcher

References

  1. Alpatov, A. P., Gorbulin, V. P. (2013). Space platforms for orbital industrial complexes: problems and prospects. News of the National Academy of Sciences of Ukraine, 12, 26–38.
  2. Alpatov, A. P., Belonozhko, P. А., Belonozhko, Р. Р., Vitushkin, A. A., Fokov, А. А. (2007). Large reflecting surfaces in space. Antennas by the communication satellite. System technologies, 3 (50), 73–87.
  3. Alpatov, A. P., Belonozhko, P. А., Belonozhko, Р. Р., Vitushkin, A. A. Fokov, А. А. (2007). Large reflecting surfaces in space. Radotelescopes, solar concentrators, flat reflectors. System Technology, 3 (50), 88–101.
  4. Robert, H. (2015). SpiderFab. Architecture for On.Orbit Manufacture of Large Aperture Space Systems. FISO Briefing, 33.
  5. Alpatov, A. P. (2013). Dynamics of perspective space vehicles. Visnik NAN Ukraine, 7, 6–13.
  6. Udwadia, F. E., Koganti, P. B. (2015). Dynamics and control of a multi-body planar pendulum. Nonlinear Dynamics, 81 (1-2), 845–866. doi: 10.1007/s11071-015-2034-0
  7. Lopes, A. M., Tenreiro Machado, J. A. (2016). Dynamics of the N-link pendulum: a fractional perspective. International Journal of Control, 90 (6), 1192–1200. doi: 10.1080/00207179.2015.1126677
  8. Fritzkowski, P., Kaminski, H. (2008). Dynamics of a rope as a rigid multibody system. Journal of Mechanics of Materials and Structures, 3 (6), 1059–1075. doi: 10.2140/jomms.2008.3.1059
  9. Szuminski, W. (2014). Dynamics of multiple pendula without gravity. Chaotic Modeling and Simulation, 1, 57–67. Available at: http://www.cmsim.eu/papers_pdf/january_2014_papers/7_CMSIM_Journal_2014_Szuminski_1_57-67.pdf
  10. Gutovsky, I. E., Zolin, A. V., Kurkov, S. V., Panteleev, V. A., Khlebnikov, V. A. (2012). Modeling of the dynamics of the opening of the truss frame of the transformed reflector of the space-based antenna by the finite element method. Modern machine building. Science and education, 2, 276–285.
  11. Bakulin, D. V., Borzykh, S. V., Ososov, N. S., Shchiblev, Yu. N. (2004). Simulation of the process of solar battery opening. Matem. Modeling, 16 (6), 88–92.
  12. Anokhin, N. V. (2013). The reduction of a pendulum pendulum to a position of equilibrium by means of a single control moment. Izv. RAN. Theory and control systems, 5, 44–53.
  13. Deployable Perimeter Truss with Blade Reel Deployment Mechanism. Available at: https://www.techbriefs.com/component/content/article/tb/techbriefs/mechanics-and-machinery/24098
  14. Bushuev, A. Yu., Farafonov, B. A. (2014). Mathematical modeling of the process of disclosure of a large-scale solar battery. Mathematical Modeling and Numerical Methods, 2, 101–114.
  15. Schessnyak, S., Romanov, A. (2009). Designing and calculating large-scale unfolding structures using software packages MSC.Software. CADmaster, 2-3, 28–36.
  16. Boykov, V. G. (2009). Program complex of automated dynamic analysis of EULER multicomponent mechanical systems. CAD and graphics, 9, 17–20.
  17. Zimin, V. N., Krylov, A. V., Meshkovsky, V. E., Sdobnikov, A. N., Faizullin, F. R., Churilin, S. A. (2014). Peculiarities of calculating the opening of large-sized transformable structures of various configurations. Science and Education. MGTU im. N.E. Bauman, 10, 179–191.
  18. Martınez-Alfaro, H. Obtaining the dynamic equations, their simulation, and animation for N pendulums using Maple. Available at: http://www2.esm.vt.edu/~anayfeh/conf10/Abstracts/martinez-alfaro.pdf
  19. Yan, X., Fu-ling, G., Yao, Z., Mengliang, Z. (2012). Kinematic analysis of the deployable truss structures for space applications. Journal of Aerospace Technology and Management, 4 (4), 453–462. doi: 10.5028/jatm.2012.04044112
  20. Hoyt, R., Cushing, J., Slostad, J. (2013). SpiderFab: Process for On-Orbit Construction of Kilometer­Scale Apertures. NASA Goddard Space Flight Center 8800 Greenbelt Road Greenbelt, MD 20771, 53.
  21. Kutsenko, L., Shoman, O., Semkiv, O., Zapolsky, L., Adashevskay, I., Danylenko, V. et. al. (2017). Geometrical modeling of the inertial unfolding of a multi-link pendulum in weightlessness. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 42–50. doi: 10.15587/1729-4061.2017.114269
  22. Kutsenko, L. M. (2017). Illustrations for geometric modeling of inertial disclosure of a multi-faceted pendulum in weightlessness. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/4868
  23. Kutsenko, L., Semkiv, O., Zapolskiy, L., Shoman, O., Kalynovskyi, A., Piksasov, M. et. al. (2018). Sydorenko Geometrical modeling of the process of weaving a wire cloth in weightlessness using the inertial unfolding of a dual pendulum. Eastern-European Journal of Enterprise Technologies, 1 (7 (91)), 37–46. doi: 10.15587/1729-4061.2018.121022
  24. Kutsenko, L. M. Heometrychne modeliuvannia pletinnia sitkopolotna v nevahomosti za dopomohoiu inertsiynoho rozkryttia podviinoho maiatnyka. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/5143
  25. Kutsenko, L. M. Iliustratsiyi do statti heometrychne modeliuvannia protsesu rozkryttia sterzhnevykh konstruktsiyi u nevahomosti. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/6335
  26. An umbrella-shaped deployable mechanism constructed by six Myard linkages a Two 5R Myard linkages, b 2-Myard mechanism by sharing one common sub-chain. Available at: https://www.researchgate.net/figure/An-umbrella-shaped-deployable-mechanism-constructed-by-six-Myard-linkages-a-Two-5R-Myard_271570634
  27. Self deployable truss. Available at: https://www.youtube.com/watch?v=sH7NHZwPzMM
  28. Wang Yaping shows pendulum motion in space. Available at: https://www.youtube.com/watch?v=dqcVONfly8U
  29. Gladkov, S. V. Computer simulation of oscillations of the "Chaotic pendulum". Available at: http://old.exponenta.ru/educat/referat/student8/index.asp
  30. Ter Haar, D. (1974). Fundamentals of Hamiltonian mechanics. Мoscow: Nauka, 224.
  31. Pyrotechnics Test Facility. Available at: https://www.nasa.gov/centers/johnson/engineering/human_space_vehicle_systems/energy_systems_test_area/pyrotechnics/index.html
  32. Prospects for the application of spatial structures from plastics in space technology. Available at: http://stroi-archive.ru/polimery-v-stroitelstve/706-perspektivy-primeneniya-prostranstvennyh-konstrukciy-iz-plastmass-v-kosmicheskoy-tehnike.html

Downloads

Published

2018-03-23

How to Cite

Kutsenko, L., Semkiv, O., Zapolskiy, L., Shoman, O., Ismailova, N., Vasyliev, S., Adashevska, I., Danylenko, V., & Pobidash, A. (2018). Geometrical modeling of the shape of a multilink rod structure in weightlessness under the influence of pulses on the end points of its links. Eastern-European Journal of Enterprise Technologies, 2(7 (92), 44–58. https://doi.org/10.15587/1729-4061.2018.126693

Issue

Section

Applied mechanics