Development of nanomodifiedrapid hardening fiber-reinforced concretes for special-purpose facilities

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127001

Keywords:

nanomodification, dispersed reinforcement, organo-mineral additive, rapid-hardening concrete, deformation properties, high-velocity impact

Abstract

Experimental studies confirmed that the development of rapid-hardening concretes with high resistance to a high-velocity impact for special-purpose facilities is achieved through the multilevel modification of the structure. The introduction of dispersed fibers ensures optimization of a structure at the macro- and mesolevel. At the micro- and nano-leves ‒ by energetically active ultra- and nanofine mineral additives and a high-reducing polycarboxylate superplasticizer. We established high efficiency of the influence of an organo-mineral nanomodifier containing polycarboxylate superplasticizer, micro- and nano-silica on the workability of the concrete mixture and the kinetics of concrete hardening based on it. We detected a directional formation of the structure and the preset properties of concretes of highly flowing mixtures at both early and late stages of hardening. We established that the early strength of nanomodified concretes increases by 4.8‒5.1 times, and strength after 28 days ‒ by 2.0‒2.3 times. The study showed that an increase in the number of contacts, reduction in size and the number of initial defects and increasing the homogeneity of nanomodified concrete leads to the creation of a dense, fine-porous, less defective structure. Ensuring such a structure of nanomodified fiber-reinforced concretes leads to an increase in deformation characteristics, specifically stiffness and elasticity, which make it possible to withstand greater stresses at a constant value of relative deformations. We carried out tests on resistance of nanomodified fiber-reinforced concretes under conditions of action of a high-velocity impact that indicate their increased impact viscosity. Thus, we can argue about the relevance of a mechanism for the formation of regulated properties of nanomodified fiber-reinforced concretes and about practical attractiveness of the proposed technological solutions.

Author Biographies

Uliana Marushchak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Building Production

Myroslav Sanytsky, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Department

Department of Building Production

Sergiy Korolko, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79012

PhD, Associate Professor

Department of Electromechanics and Electronics

Yuriy Shabatura, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79012

Doctor of Technical Sciences, Professor, Head of Department

Department of Electromechanics and Electronics

Nazar Sydor, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of Building Production

References

  1. Savickiy, N. V., Nikiforova, T. D. (2016). Ukreplennye rayony i mobil'nye blok-posty dlya oborony territorii i zashchity lichnogo sostava v zone provedeniya antiterroristicheskoy operacii. Mistobuduvannia ta terytorialne planuvannia, 61, 92–100.
  2. Shabatura, Yu. V. et. al. (2017). Perspektyvy zastosuvannia pryrodnykh ta shtuchnykh materialiv dlia dodatkovoho zakhystu inzhenernykh ukriplen ta sporud. Perspektyvy rozvytku ozbroiennia ta viyskovoi tekhniky sukhoputnykh viysk. Lviv: NASV, 291.
  3. Murthy, A., Palani, G., Iyer, N. (2010). Impact Analysis of Concrete Structural Components. Defence Science Journal, 60 (3), 307–319. doi: 10.14429/dsj.60.358
  4. Korobko, O. O. et. al. (2013). Analiz mekhanizmiv poetapnoi orhanizatsiyi mikrostruktury betoniv. Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, 25, 76–83.
  5. Rana, N., Tiwari, A., Srivastava, A. K. (2016). Structural behavior of High Performance Concrete. International Journal of Current Engineering and Technology, 6 (3), 982–985.
  6. Ubaidullaiev, Yu. N. (2013). Model vyboru ratsionalnoi oriyentatsiyi armatury v zalizobetonnykh obolonkovykh konstruktsiyakh fortyfikatsiynykh sporud. Tsentr voienno-stratehichnykh doslidzhen Natsionalnoho universytetu oborony Ukrainy, 2 (48), 96–99.
  7. Afanasieva, L. V. (2016). Zalizobetonni konstruktsiyi v umovakh vysokoshvydkisnoho udaru. Mistobuduvannia ta terytorialne planuvannia, 61, 108–113.
  8. Haifeng, L., Jianguo, N. (2009). Mechanical behavior of reinforced concrete subjected to impact loading. Mechanics of Materials, 41 (12), 1298–1308. doi: 10.1016/j.mechmat.2009.05.008
  9. Iqbal, M. A., Rajput, A., Bhargava, P. (2017). Plain and Reinforced Concrete Targets Subjected to Projectile Impact. Procedia Engineering, 173, 138–144. doi: 10.1016/j.proeng.2016.12.050
  10. Skoruk, O. (2016). Mitsnist ta trishchynostiykist stalefibrobetonnykh plyt, opertykh po konturu pry povtornykh navantazhenniakh. Pidvodni tekhnolohiyi. Promyslova ta tsyvilna inzheneriya, 3, 83–93.
  11. Dvorkin, L. Y. et. al. (2016). Proektuvannia skladiv fibrobetonu iz zastosuvanniam eksperymentalno-statystychnykh modelei. Suchasni tekhnolohiyi ta metody rozrakhunku v budivnytstvi, 5, 45–58.
  12. Wille, K., El-Tawil, S., Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites, 48, 53–66. doi: 10.1016/j.cemconcomp.2013.12.015
  13. Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. doi: 10.1016/j.conbuildmat.2015.05.105
  14. Kyrychok, V. I., Kryvenko, P. V., Huziy, S. H. (2017). Dyspersne armuvannia luzhnykh aliumosylikatnykh pokryttiv dlia zakhystu betonu vid koroziyi. Budivelni materialy ta vyroby, 3-4, 30–33.
  15. Solodky, S. Y., Turba, Y. V. (2012). Crack resistance of concrete, reinforced with fiber of different types. 18 Internationale Baustofftagung. Weimar: Ibausil, 0561–0567.
  16. Korotkih, D. N. (2011). Dispersnoe armirovanie struktury betona pri mnogourovnevom treshchinoobrazovanii. Stroitel'nye materialy, 3, 96–99.
  17. Boria, S., Pavlovic, A., Fragassa, C., Santulli, C. (2016). Modeling of Falling Weight Impact Behavior of Hybrid Basalt/Flax Vinylester Composites. Procedia Engineering, 167, 223–230. doi: 10.1016/j.proeng.2016.11.691
  18. Sanytskyi, M. A., Marushchak, U. D., Kirakevych, I. I., Stechyshyn, M. S. (2015). Vysokomitsni samoushchilniuvalni betony na osnovi dyspersno-armovanykh tsementuiuchykh system. Stroitel'nye materialy i izdeliya, 1, 6–9.
  19. Falikman, V. R. (2013). Nanomaterialy i nanotekhnologii v sovremennyh betonah. Promyshlennoe i grazhdanskoe stroitel'stvo, 1, 31–34.
  20. Konsta-Gdoutos, M. S., Metaxa, Z. S., Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40 (7), 1052–1059. doi: 10.1016/j.cemconres.2010.02.015
  21. Pushkarova, K., Sukhanevych, M., Martsikh, A. (2016). Using of Untreated Carbon Nanotubes in Cement Compositions. Materials Science Forum, 865, 6–11. doi: 10.4028/www.scientific.net/msf.865.6
  22. Tolmachev, S. N., Belichenko, E. A. (2017). Perspektivy primeneniya nanochastic v betonah transportnogo naznacheniya. Budivelni materialy ta vyroby, 1-2, 38–41.
  23. Sakulich, A. R., Li, V. C. (2011). Nanoscale characterization of engineered cementitious composites (ECC). Cement and Concrete Research, 41 (2), 169–175. doi: 10.1016/j.cemconres.2010.11.001
  24. Jo, B.-W., Kim, C.-H., Tae, G., Park, J.-B. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21 (6), 1351–1355. doi: 10.1016/j.conbuildmat.2005.12.020
  25. Horszczaruk, E., Mijowska, E., Cendrowski, K., Sikora, P. (2014). Influence of the new method of nanosilica addition on the mechanical properties of cement mortars. Cement Wapno Beton, 5, 308–316.
  26. Pushkarova, K. K., Kaverin, K. O., Kalantaevsky, D. O. (2015). Research of high-strength cement compositions modified by complex organic-silica additives. Eastern-European Journal of Enterprise Technologies, 5 (5 (77)), 42–51. doi: 10.15587/1729-4061.2015.51836
  27. Marushchak, U., Sanytsky, M., Mazurak, T., Olevych, Y. (2016). Research of nanomodified portland cement compositions with high early age strength. Eastern-European Journal of Enterprise Technologies, 6 (6 (84)), 50–57. doi: 10.15587/1729-4061.2016.84175
  28. Leshchinskiy, M. Yu. (1980). Ispytanie betona. Moscow: Stroyizdat, 360.
  29. Marushchak, U., Sanytsky, M., Olevych, Y. (2017). Effects of elevated temperatures on the properties of nanomodified rapid hardening concretes. MATEC Web of Conferences, 116, 01008. doi: 10.1051/matecconf/201711601008
  30. Marushchak, U., Sanytsky, M., Sydor, N. (2017). Design of rapid hardening engineered cementitious composites for sustainable construction. Selected Scientific Papers – Journal of Civil Engineering, 12 (2). doi: 10.1515/sspjce-2017-0026

Downloads

Published

2018-03-27

How to Cite

Marushchak, U., Sanytsky, M., Korolko, S., Shabatura, Y., & Sydor, N. (2018). Development of nanomodifiedrapid hardening fiber-reinforced concretes for special-purpose facilities. Eastern-European Journal of Enterprise Technologies, 2(6 (92), 34–41. https://doi.org/10.15587/1729-4061.2018.127001

Issue

Section

Technology organic and inorganic substances