DOI: https://doi.org/10.15587/1729-4061.2018.127345

Energy absorbers on the steel plate – rubber laminate after deformable projectile impact

Helmy Purwanto, Rudy Soenoko, Anindito Purnowidodo, Agus Suprapto

Abstract


The ability of energy absorption can be used to measure the strength of material against ballistic impact. This paper aims to analyze the rubber plated energy absorption plate that was shot with deformable projectiles. This study was conducted using numerical simulations based on the finite element that have been verified with experimental results. The simulation setting on a steel plate with different hardness with the addition of rubber thickness is prepared as a ballistic test panel. Manufacturing between layers made non fix with the back plate. Panel shot by using 5.56x 45 mm deformable caliber bullet with a distance of 15 m of normal attack angle. The finite element code with Johnson-Cook and Mooney-Rivlin elasto-plastic material models was were employed to perform the simulation study. Simulation results show the energy due to ballistic impact received and absorbed by the panel rises significantly shortly after the collision until reaching a certain number on a single plate where energy will decrease because the projectile successfully penetrated the plate. While on a layered plate, after the projectile succeeded in penetrating the front side plate, the absorption energy reached the maximum number and then remained constant, which caused the projectile not to be able to penetrate the next layer. These findings indicate that the addition of rubber with a layered structure is able to absorb the energy of ballistic impact


Keywords


energy absorber; hard plate; soft plate; ballistic laminate plate; rubber; ballistic impact; simulation

Full Text:

PDF

References


Brinson, L. C., Allison, J., Chen, J., Clarke, D. R. et. al. (2012). Application of Lightweighting Technology to Military Aircraft, Vessels, and Vehicles. National Academy Press, Washington, DC.

Børvik, T., Hopperstad, O. S., Langseth, M., Malo, K. A. (2003). Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. International Journal of Impact Engineering, 28 (4), 413–464. doi: https://doi.org/10.1016/s0734-743x(02)00072-6

Zukas, J. A. (1980). Impact dynamics: theory and experiment. DTIC Document, 66.

Jena, P. K., Mishra, B., RameshBabu, M., Babu, A., Singh, A. K., SivaKumar, K., Bhat, T. B. (2010). Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel. International Journal of Impact Engineering, 37 (3), 242–249. doi: https://doi.org/10.1016/j.ijimpeng.2009.09.003

Jacobs, M. J. N., Van Dingenen, J. L. J. (2001). Ballistic Protection Mechanisms in Personal Armour. Journal of Materials Science, 36 (13), 3137–3142. doi: https://doi.org/10.1023/a:1017922000090

Roland, C. M., Fragiadakis, D., Gamache, R. M., Casalini, R. (2013). Factors influencing the ballistic impact resistance of elastomer-coated metal substrates. Philosophical Magazine, 93 (5), 468–477. doi: https://doi.org/10.1080/14786435.2012.722235

Mohotti, D., Ngo, T., Mendis, P., Raman, S. N. (2013). Polyurea coated composite aluminium plates subjected to high velocity projectile impact. Materials & Design (1980-2015), 52, 1–16. doi: https://doi.org/10.1016/j.matdes.2013.05.060

Silva, M. A. G., Cismaşiu, C., Chiorean, C. G. (2005). Numerical simulation of ballistic impact on composite laminates. International Journal of Impact Engineering, 31 (3), 289–306. doi: https://doi.org/10.1016/j.ijimpeng.2004.01.011

Choi, H. Y., Downs, R. J., Chang, F.-K. (1991). A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part I–Experiments. Journal of Composite Materials, 25 (8), 992–1011. doi: https://doi.org/10.1177/002199839102500803

Choi, H. Y., Wu, H.-Y. T., Chang, F.-K. (1991). A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II–Analysis. Journal of Composite Materials, 25 (8), 1012–1038. doi: https://doi.org/10.1177/002199839102500804

Molnar, W., Nugent, S., Lindroos, M., Apostol, M., Varga, M. (2015). Ballistic and numerical simulation of impacting goods on conveyor belt rubber. Polymer Testing, 42, 1–7. doi: https://doi.org/10.1016/j.polymertesting.2014.12.001

Sháněl, V., Španiel, M. (2014). Ballistic Impact Experiments and Modelling of Sandwich Armor for Numerical Simulations. Procedia Engineering, 79, 230–237. doi: https://doi.org/10.1016/j.proeng.2014.06.336

Naik, N., Kumar, S., Ratnaveer, D., Joshi, M., Akella, K. (2012). An energy-based model for ballistic impact analysis of ceramic-composite armors. International Journal of Damage Mechanics, 22 (2), 145–187. doi: https://doi.org/10.1177/1056789511435346

Teng, X., Dey, S., Børvik, T., Wierzbicki, T. (2007). Protection performance of double-layered metal shields against projectile impact. Journal of Mechanics of Materials and Structures, 2 (7), 1309–1329. doi: https://doi.org/10.2140/jomms.2007.2.1309

Flores-Johnson, E. A., Saleh, M., Edwards, L. (2011). Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile. International Journal of Impact Engineering, 38 (12), 1022–1032. doi: https://doi.org/10.1016/j.ijimpeng.2011.08.005

Dey, S., Børvik, T., Teng, X., Wierzbicki, T., Hopperstad, O. S.(2007). On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 44 (20), 6701–6723. doi: https://doi.org/10.1016/j.ijsolstr.2007.03.005

Senthil, K., Iqbal, M. A. (2013). Effect of projectile diameter on ballistic resistance and failure mechanism of single and layered aluminum plates. Theoretical and Applied Fracture Mechanics, 67-68, 53–64. doi: https://doi.org/10.1016/j.tafmec.2013.12.010

Mohotti, D., Ngo, T., Raman, S. N., Mendis, P. (2015). Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact. Materials & Design, 82, 1–17. doi: https://doi.org/10.1016/j.matdes.2015.05.036

Lee, C. H., Kim, C. W., Yang, S. U., Ku, B. M. (2007). A Development of Integral Composite Structure for the Ramp of Infantry Fighting Vehicle. 23rd International Symposium on Ballistics. Tarragona, 895.

López-Puente, J., Arias, A., Zaera, R., Navarro, C. (2005). The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. International Journal of Impact Engineering, 32 (1-4), 321–336. doi: https://doi.org/10.1016/j.ijimpeng.2005.07.014

Morye, S. S., Hine, P. J., Duckett, R. A., Carr, D. J., Ward, I. M. (2000). Modelling of the energy absorption by polymer composites upon ballistic impact. Composites Science and Technology, 60 (14), 2631–2642. doi: https://doi.org/10.1016/s0266-3538(00)00139-1

Liu, W., Chen, Z., Cheng, X., Wang, Y., Amankwa, A. R., Xu, J. (2016). Design and ballistic penetration of the ceramic composite armor. Composites Part B: Engineering, 84, 33–40. doi: https://doi.org/10.1016/j.compositesb.2015.08.071

Haro, E. E., Odeshi, A. G., Szpunar, J. A. (2016). The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact. International Journal of Impact Engineering, 96, 11–22. doi: https://doi.org/10.1016/j.ijimpeng.2016.05.012

Johnson, G. R., Cook, W. H. (1983). A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proceedings 7th International Symposium on Ballistics, 541–547.

Treloar, L. R. G. (1944). Stress-strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 40, 59. doi: https://doi.org/10.5254/1.3546701

Guo, Z., Sluys, L. J. (2008). Constitutive modelling of hyperelastic rubber-like materials. Heron, 53 (3), 109–132.

Børvik, T., Dey, S., Clausen, A. H. (2009). Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36 (7), 948–964. doi: https://doi.org/10.1016/j.ijimpeng.2008.12.003


GOST Style Citations


Application of Lightweighting Technology to Military Aircraft, Vessels, and Vehicles / Brinson L. C., Allison J., Chen J., Clarke D. R. et. al. National Academy Press, Washington, DC, 2012.

Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates / Børvik T., Hopperstad O. S., Langseth M., Malo K. A. // International Journal of Impact Engineering. 2003. Vol. 28, Issue 4. P. 413–464. doi: https://doi.org/10.1016/s0734-743x(02)00072-6 

Zukas J. A. Impact dynamics: theory and experiment. DTIC Document, 1980. 66 p.

Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel / Jena P. K., Mishra B., RameshBabu M., Babu A., Singh A. K., SivaKumar K., Bhat T. B. // International Journal of Impact Engineering. 2010. Vol. 37, Issue 3. P. 242–249. doi: https://doi.org/10.1016/j.ijimpeng.2009.09.003 

Jacobs M. J. N., Van Dingenen J. L. J. Ballistic Protection Mechanisms in Personal Armour // Journal of Materials Science. 2001. Vol. 36, Issue 13. P. 3137–3142. doi: https://doi.org/10.1023/a:1017922000090 

Factors influencing the ballistic impact resistance of elastomer-coated metal substrates / Roland C. M., Fragiadakis D., Gamache R. M., Casalini R. // Philosophical Magazine. 2013. Vol. 93, Issue 5. P. 468–477. doi: https://doi.org/10.1080/14786435.2012.722235 

Polyurea coated composite aluminium plates subjected to high velocity projectile impact / Mohotti D., Ngo T., Mendis P., Raman S. N. // Materials & Design (1980-2015). 2013. Vol. 52. P. 1–16. doi: https://doi.org/10.1016/j.matdes.2013.05.060 

Silva M. A. G., Cismaşiu C., Chiorean C. G. Numerical simulation of ballistic impact on composite laminates // International Journal of Impact Engineering. 2005. Vol. 31, Issue 3. P. 289–306. doi: https://doi.org/10.1016/j.ijimpeng.2004.01.011 

Choi H. Y., Downs R. J., Chang F.-K. A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part I–Experiments // Journal of Composite Materials. 1991. Vol. 25, Issue 8. P. 992–1011. doi: https://doi.org/10.1177/002199839102500803 

Choi, H. Y., Wu, H.-Y. T., Chang, F.-K. A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II–Analysis // Journal of Composite Materials. 1991. Vol. 25, Issue 8. P. 1012–1038. doi: https://doi.org/10.1177/002199839102500804 

Ballistic and numerical simulation of impacting goods on conveyor belt rubber / Molnar W., Nugent S., Lindroos M., Apostol M., Varga M. // Polymer Testing. 2015. Vol. 42. P. 1–7. doi: https://doi.org/10.1016/j.polymertesting.2014.12.001 

Sháněl V., Španiel M. Ballistic Impact Experiments and Modelling of Sandwich Armor for Numerical Simulations // Procedia Engineering. 2014. Vol. 79. P. 230–237. doi: https://doi.org/10.1016/j.proeng.2014.06.336 

An energy-based model for ballistic impact analysis of ceramic-composite armors / Naik N., Kumar S., Ratnaveer D., Joshi M., Akella K. // International Journal of Damage Mechanics. 2012. Vol. 22, Issue 2. P. 145–187. doi: https://doi.org/10.1177/1056789511435346 

Protection performance of double-layered metal shields against projectile impact / Teng X., Dey S., Børvik T., Wierzbicki T. // Journal of Mechanics of Materials and Structures. 2007. Vol. 2, Issue 7. P. 1309–1329. doi: https://doi.org/10.2140/jomms.2007.2.1309 

Flores-Johnson E. A., Saleh M., Edwards L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile // International Journal of Impact Engineering. 2011. Vol. 38, Issue 12. P. 1022–1032. doi: https://doi.org/10.1016/j.ijimpeng.2011.08.005 

On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation / Dey S., Børvik T., Teng X., Wierzbicki T., Hopperstad O. S. // International Journal of Solids and Structures. 2007. Vol. 44, Issue 20. P. 6701–6723. doi: https://doi.org/10.1016/j.ijsolstr.2007.03.005 

Senthil K., Iqbal M. A. Effect of projectile diameter on ballistic resistance and failure mechanism of single and layered aluminum plates // Theoretical and Applied Fracture Mechanics. 2013. Vol. 67-68. P. 53–64. doi: https://doi.org/10.1016/j.tafmec.2013.12.010 

Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact / Mohotti D., Ngo T., Raman S. N., Mendis P. // Materials & Design. 2015. Vol. 82. P. 1–17. doi: https://doi.org/10.1016/j.matdes.2015.05.036 

A Development of Integral Composite Structure for the Ramp of Infantry Fighting Vehicle / Lee C. H., Kim C. W., Yang S. U., Ku B. M. // 23rd International Symposium on Ballistics. Tarragona, 2007. P. 895.

The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study / López-Puente J., Arias A., Zaera R., Navarro C. // International Journal of Impact Engineering. 2005. Vol. 32, Issue 1-4. P. 321–336. doi: https://doi.org/10.1016/j.ijimpeng.2005.07.014 

Modelling of the energy absorption by polymer composites upon ballistic impact / Morye S. S., Hine P. J., Duckett R. A., Carr D. J., Ward I. M. // Composites Science and Technology. 2000. Vol. 60, Issue 14. P. 2631–2642. doi: https://doi.org/10.1016/s0266-3538(00)00139-1 

Design and ballistic penetration of the ceramic composite armor / Liu W., Chen Z., Cheng X., Wang Y., Amankwa A. R., Xu J. // Composites Part B: Engineering. 2016. Vol. 84. P. 33–40. doi: https://doi.org/10.1016/j.compositesb.2015.08.071 

Haro E. E., Odeshi A. G., Szpunar J. A. The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact // International Journal of Impact Engineering. 2016. Vol. 96. P. 11–22. doi: https://doi.org/10.1016/j.ijimpeng.2016.05.012 

Johnson G. R., Cook W. H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures // Proceedings 7th International Symposium on Ballistics. 1983. P. 541–547.

Treloar L. R. G. Stress-strain data for vulcanised rubber under various types of deformation // Transactions of the Faraday Society. 1944. Vol. 40. P. 59. doi: https://doi.org/10.5254/1.3546701 

Guo Z., Sluys L. J. Constitutive modelling of hyperelastic rubber-like materials // Heron. 2008. Vol. 53, Issue 3. P. 109–132.

Børvik T., Dey S., Clausen A. H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles // International Journal of Impact Engineering. 2009. Vol. 36, Issue 7. P. 948–964. doi: https://doi.org/10.1016/j.ijimpeng.2008.12.003 







Copyright (c) 2018 Helmy Purwanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061