Energy absorbers on the steel plate – rubber laminate after deformable projectile impact

Authors

  • Helmy Purwanto Wahid Hasyim University Jalan. Menoreh Tengah, X/22, Sampangan, Semarang, Indonesia, 50236 Brawijaya University Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia
  • Rudy Soenoko Brawijaya University Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0002-0537-4189
  • Anindito Purnowidodo Brawijaya University Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia
  • Agus Suprapto University of Merdeka Malang Jalan. Terusan Raya Dieng, 62-64, Malang, Indonesia, 65146, Indonesia

DOI:

https://doi.org/10.15587/1729-4061.2018.127345

Keywords:

energy absorber, hard plate, soft plate, ballistic laminate plate, rubber, ballistic impact, simulation

Abstract

The ability of energy absorption can be used to measure the strength of material against ballistic impact. This paper aims to analyze the rubber plated energy absorption plate that was shot with deformable projectiles. This study was conducted using numerical simulations based on the finite element that have been verified with experimental results. The simulation setting on a steel plate with different hardness with the addition of rubber thickness is prepared as a ballistic test panel. Manufacturing between layers made non fix with the back plate. Panel shot by using 5.56x 45 mm deformable caliber bullet with a distance of 15 m of normal attack angle. The finite element code with Johnson-Cook and Mooney-Rivlin elasto-plastic material models was were employed to perform the simulation study. Simulation results show the energy due to ballistic impact received and absorbed by the panel rises significantly shortly after the collision until reaching a certain number on a single plate where energy will decrease because the projectile successfully penetrated the plate. While on a layered plate, after the projectile succeeded in penetrating the front side plate, the absorption energy reached the maximum number and then remained constant, which caused the projectile not to be able to penetrate the next layer. These findings indicate that the addition of rubber with a layered structure is able to absorb the energy of ballistic impact

Author Biographies

Helmy Purwanto, Wahid Hasyim University Jalan. Menoreh Tengah, X/22, Sampangan, Semarang, Indonesia, 50236 Brawijaya University Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Department of Mechanical Engineering

Doctoral Student

Department of Mechanical Engineering

Rudy Soenoko, Brawijaya University Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering, Professor

Department of Mechanical Engineering

Anindito Purnowidodo, Brawijaya University Malang Jalan. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Agus Suprapto, University of Merdeka Malang Jalan. Terusan Raya Dieng, 62-64, Malang, Indonesia, 65146

Doctor of Mechanical Engineering, Professor

Department of Mechanical Engineering

References

  1. Brinson, L. C., Allison, J., Chen, J., Clarke, D. R. et. al. (2012). Application of Lightweighting Technology to Military Aircraft, Vessels, and Vehicles. National Academy Press, Washington, DC.
  2. Børvik, T., Hopperstad, O. S., Langseth, M., Malo, K. A. (2003). Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. International Journal of Impact Engineering, 28 (4), 413–464. doi: https://doi.org/10.1016/s0734-743x(02)00072-6
  3. Zukas, J. A. (1980). Impact dynamics: theory and experiment. DTIC Document, 66.
  4. Jena, P. K., Mishra, B., RameshBabu, M., Babu, A., Singh, A. K., SivaKumar, K., Bhat, T. B. (2010). Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel. International Journal of Impact Engineering, 37 (3), 242–249. doi: https://doi.org/10.1016/j.ijimpeng.2009.09.003
  5. Jacobs, M. J. N., Van Dingenen, J. L. J. (2001). Ballistic Protection Mechanisms in Personal Armour. Journal of Materials Science, 36 (13), 3137–3142. doi: https://doi.org/10.1023/a:1017922000090
  6. Roland, C. M., Fragiadakis, D., Gamache, R. M., Casalini, R. (2013). Factors influencing the ballistic impact resistance of elastomer-coated metal substrates. Philosophical Magazine, 93 (5), 468–477. doi: https://doi.org/10.1080/14786435.2012.722235
  7. Mohotti, D., Ngo, T., Mendis, P., Raman, S. N. (2013). Polyurea coated composite aluminium plates subjected to high velocity projectile impact. Materials & Design (1980-2015), 52, 1–16. doi: https://doi.org/10.1016/j.matdes.2013.05.060
  8. Silva, M. A. G., Cismaşiu, C., Chiorean, C. G. (2005). Numerical simulation of ballistic impact on composite laminates. International Journal of Impact Engineering, 31 (3), 289–306. doi: https://doi.org/10.1016/j.ijimpeng.2004.01.011
  9. Choi, H. Y., Downs, R. J., Chang, F.-K. (1991). A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part I–Experiments. Journal of Composite Materials, 25 (8), 992–1011. doi: https://doi.org/10.1177/002199839102500803
  10. Choi, H. Y., Wu, H.-Y. T., Chang, F.-K. (1991). A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II–Analysis. Journal of Composite Materials, 25 (8), 1012–1038. doi: https://doi.org/10.1177/002199839102500804
  11. Molnar, W., Nugent, S., Lindroos, M., Apostol, M., Varga, M. (2015). Ballistic and numerical simulation of impacting goods on conveyor belt rubber. Polymer Testing, 42, 1–7. doi: https://doi.org/10.1016/j.polymertesting.2014.12.001
  12. Sháněl, V., Španiel, M. (2014). Ballistic Impact Experiments and Modelling of Sandwich Armor for Numerical Simulations. Procedia Engineering, 79, 230–237. doi: https://doi.org/10.1016/j.proeng.2014.06.336
  13. Naik, N., Kumar, S., Ratnaveer, D., Joshi, M., Akella, K. (2012). An energy-based model for ballistic impact analysis of ceramic-composite armors. International Journal of Damage Mechanics, 22 (2), 145–187. doi: https://doi.org/10.1177/1056789511435346
  14. Teng, X., Dey, S., Børvik, T., Wierzbicki, T. (2007). Protection performance of double-layered metal shields against projectile impact. Journal of Mechanics of Materials and Structures, 2 (7), 1309–1329. doi: https://doi.org/10.2140/jomms.2007.2.1309
  15. Flores-Johnson, E. A., Saleh, M., Edwards, L. (2011). Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile. International Journal of Impact Engineering, 38 (12), 1022–1032. doi: https://doi.org/10.1016/j.ijimpeng.2011.08.005
  16. Dey, S., Børvik, T., Teng, X., Wierzbicki, T., Hopperstad, O. S.(2007). On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 44 (20), 6701–6723. doi: https://doi.org/10.1016/j.ijsolstr.2007.03.005
  17. Senthil, K., Iqbal, M. A. (2013). Effect of projectile diameter on ballistic resistance and failure mechanism of single and layered aluminum plates. Theoretical and Applied Fracture Mechanics, 67-68, 53–64. doi: https://doi.org/10.1016/j.tafmec.2013.12.010
  18. Mohotti, D., Ngo, T., Raman, S. N., Mendis, P. (2015). Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact. Materials & Design, 82, 1–17. doi: https://doi.org/10.1016/j.matdes.2015.05.036
  19. Lee, C. H., Kim, C. W., Yang, S. U., Ku, B. M. (2007). A Development of Integral Composite Structure for the Ramp of Infantry Fighting Vehicle. 23rd International Symposium on Ballistics. Tarragona, 895.
  20. López-Puente, J., Arias, A., Zaera, R., Navarro, C. (2005). The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. International Journal of Impact Engineering, 32 (1-4), 321–336. doi: https://doi.org/10.1016/j.ijimpeng.2005.07.014
  21. Morye, S. S., Hine, P. J., Duckett, R. A., Carr, D. J., Ward, I. M. (2000). Modelling of the energy absorption by polymer composites upon ballistic impact. Composites Science and Technology, 60 (14), 2631–2642. doi: https://doi.org/10.1016/s0266-3538(00)00139-1
  22. Liu, W., Chen, Z., Cheng, X., Wang, Y., Amankwa, A. R., Xu, J. (2016). Design and ballistic penetration of the ceramic composite armor. Composites Part B: Engineering, 84, 33–40. doi: https://doi.org/10.1016/j.compositesb.2015.08.071
  23. Haro, E. E., Odeshi, A. G., Szpunar, J. A. (2016). The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact. International Journal of Impact Engineering, 96, 11–22. doi: https://doi.org/10.1016/j.ijimpeng.2016.05.012
  24. Johnson, G. R., Cook, W. H. (1983). A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proceedings 7th International Symposium on Ballistics, 541–547.
  25. Treloar, L. R. G. (1944). Stress-strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 40, 59. doi: https://doi.org/10.5254/1.3546701
  26. Guo, Z., Sluys, L. J. (2008). Constitutive modelling of hyperelastic rubber-like materials. Heron, 53 (3), 109–132.
  27. Børvik, T., Dey, S., Clausen, A. H. (2009). Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36 (7), 948–964. doi: https://doi.org/10.1016/j.ijimpeng.2008.12.003

Downloads

Published

2018-07-05

How to Cite

Purwanto, H., Soenoko, R., Purnowidodo, A., & Suprapto, A. (2018). Energy absorbers on the steel plate – rubber laminate after deformable projectile impact. Eastern-European Journal of Enterprise Technologies, 4(7 (94), 6–12. https://doi.org/10.15587/1729-4061.2018.127345

Issue

Section

Applied mechanics