Modeling a thermal conductivity process under the action of flame on the wall of fireretardant reed
DOI:
https://doi.org/10.15587/1729-4061.2018.128316Keywords:
reed fire protection, swelling coatings, thermal conductivity, surface treatment, thermophysical propertiesAbstract
Creating environmentally friendly flame-retardant materials for natural inflammable roof structures will make it possible to control the processes of thermal stability and physical-chemical properties of a protective coating over its life cycle. There is therefore a need to study conditions for the formation of a thermal conductivity barrier and for the establishment of a mechanism that inhibits heat transfer to the material. It was experimentally determined that reed, non-treated with a flame-retardant agent, was ignited under the action of burner in 5 seconds, with the flame spreading throughout the entire surface, which resulted in its complete burning and the loss of mass. The study that we conducted into the influence of a coating on the transfer processes of a high-temperature flame to a material, established the fire protection process mechanisms, which imply the inhibition of such an action. It was proven that this process includes the decomposition of flame retardants under the action of temperature, with heat absorption and release of incombustible gases, the formation of ash-like products at the surface of a natural combustible material, as well as thermal insulation. That made it possible to determine conditions to protect reed from fire by forming a barrier to thermal conductivity. Experimental study has confirmed that a sample of fire-retardant reed withstood a thermal influence; the action of a heat flow lead to the swelling of the impregnation and the coating, which lasted for 120 seconds. We estimated the maximum possible penetration of temperature through the thickness of a coating and established that when reed, protected by the impregnating composition, was exposed to a flame of the burner, temperature at the inner surface was less than 147 °C with the mass loss not exceeding 2.9 %. Even greater efficiency was demonstrated by samples that were treated with the coating; the temperature did not exceed 140 °C, with a 2.5% mass loss. We also established that the coefficient of thermal conductivity, when protected from fire, reaches 1.6 W/(m∙°C) for the impregnating composition, and 1.2 W/(m∙°C) for the coating, respectively.
References
- Tsapko, Y., Guzii, S., Remenets, M., Kravchenko, A., Tsapko, O. (2016). Evaluation of effectiveness of wood fire protection upon exposure to flame of magnesium. Eastern-European Journal of Enterprise Technologies, 4 (10 (82)), 31–36. doi: 10.15587/1729-4061.2016.73543
- Kryvenko, P., Tsapko, Y., Guzii, S., Kravchenko, A. (2016). Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions. Eastern-European Journal of Enterprise Technologies, 5 (10 (83)), 26–31. doi: 10.15587/1729-4061.2016.79869
- Tsapko, J., Tsapko, А. (2017). Simulation of the phase transformation front advancement during the swelling of fire retardant coatings. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 50–55. doi: 10.15587/1729-4061.2017.73542
- Tsapko, Y., Tsapko, А. (2017). Influence of dry mixtures in a coating on the effectiveness of wood protection from the action of a magnesium flame. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 55–60. doi: 10.15587/1729-4061.2017.111106
- Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: 10.1002/bate.201600032
- Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3). doi: 10.15376/biores.9.3.4924-4933
- Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: 10.1021/acsami.7b00572
- Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: 10.1016/j.firesaf.2016.01.011
- Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G., Berglund, L. (2015). Oriented Clay Nanopaper from Biobased Components – Mechanisms for Superior Fire Protection Properties. ACS Applied Materials & Interfaces, 7 (10), 5847–5856. doi: 10.1021/am509058h
- Fan, F., Xia, Z., Li, Q., Li, Z. (2013). Effects of inorganic fillers on the shear viscosity and fire retardant performance of waterborne intumescent coatings. Progress in Organic Coatings, 76 (5), 844–851. doi: 10.1016/j.porgcoat.2013.02.002
- Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: 10.1021/acsami.6b00598
- Samarskiy, A. A., Vabishchevich, V. P. (2003). Vychislitel'naya teploperedacha. Moscow: Editorial URSS, 784.
- Bahvalov, N. S., Zhidkov, N. P., Kobel'kov, G. M. (1987). Chislennye metody. Moscow: Nauka, 600.
- Umnyakova, N. P. (1996). Kak sdelat' dom teplym. Moscow: Stroyizdat, 368.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Yuriy Tsapko, Аleksii Tsapko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.