DOI: https://doi.org/10.15587/1729-4061.2018.131446

Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride

Volodymyr Moravskyi, Anastasiia Kucherenko, Marta Kuznetsova, Iryna Dziaman, Oleksandr Grytsenko, Ludmila Dulebova

Abstract


Influence of concentration of components of chemical metallization solutions on the process of copper reduction on activated polyvinylchloride surface has been studied. It has been established that changes in concentrations of copper sulfate, trilon B and formaldehyde can effectively influence the metallization process. It was shown that the loss of stability of chemical metallization solutions and formation of colloidal solutions makes it is impossible to obtain a metallized polymeric material since copper reduction occurs in the solution volume. Copper reduction in the solution volume occurs because of presence of insoluble colloidal particles of copper hydroxide which are centers of nucleation of copper reduction. At such centers, copper reduction occurs as a result of reaction with formaldehyde and is accompanied by high volumes of hydrogen evolvement. It has been established that the formation of copper coating on an activated polymer surface occurs only with the use of true chemical metallization solutions. The main factor determining stability of chemical metallization solutions is complexing. It was shown that trilon B concentration under 40 mmol/l is not sufficient to bind all Cu2+ ions in a complex which prevents formation of insoluble copper hydroxide in an alkaline medium. The growth of trilon B concentration above 53 mmol/l results in reduction of a portion of copper in a form of hydroxide and formation of true solutions. It has been established that concentration of copper sulfate and alkali exerts the main influence on the mechanism of copper reduction in the case of true solutions. The growth of pH of chemical metallization solutions above 12 brings about an increase in the portion of copper that is reduced by the exchange reaction with zinc.


Keywords


concentration of solutions; optimization; metal-polymer composites; functional composites; polyvinylchloride; chemical reduction; metal fillers

References


Moravskyi, V. S. (2016). Metalizatsiya polivinilkhlorydnoho plastykatu khimichnym vidnovlenniam v rozchynakh. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannia, 841, 405–409.

Moravskyi, V. S., Dziaman, I. Z., Suberliak, S. A., Grytsenko, O. M., Kuznetsova, M. Y. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials. 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). doi: 10.1109/nap.2017.8190265

Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y. et. al. (2016). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, 41–85. doi: 10.1016/j.progpolymsci.2016.03.001

Bishay, I. K., Abd-El-Messieh, S. L., Mansour, S. H. (2011). Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Materials & Design, 32 (1), 62–68. doi: 10.1016/j.matdes.2010.06.035

Xue, Q. (2004). The influence of particle shape and size on electric conductivity of metal–polymer composites. European Polymer Journal, 40 (2), 323–327. doi: 10.1016/j.eurpolymj.2003.10.011

Li, H., John, J. V., Byeon, S. J., Heo, M. S., Sung, J. H., Kim, K.-H., Kim, I. (2014). Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies. Progress in Polymer Science, 39 (11), 1878–1907. doi: 10.1016/j.progpolymsci.2014.07.005

Nikzad, M., Masood, S. H., Sbarski, I. (2011). Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Materials & Design, 32 (6), 3448–3456. doi: 10.1016/j.matdes.2011.01.056

Luyt, A. S., Molefi, J. A., Krump, H. (2006). Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polymer Degradation and Stability, 91 (7), 1629–1636. doi: 10.1016/j.polymdegradstab.2005.09.014

Park, H. J., Badakhsh, A., Im, I. T., Kim, M.-S., Park, C. W. (2016). Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Applied Thermal Engineering, 107, 907–917. doi: 10.1016/j.applthermaleng.2016.07.053

Pang, H., Xu, L., Yan, D.-X., Li, Z.-M. (2014). Conductive polymer composites with segregated structures. Progress in Polymer Science, 39 (11), 1908–1933. doi: 10.1016/j.progpolymsci.2014.07.007

Grytsenko, O. M., Suberlyak, O. V., Moravskyі, V. S., Hayduk, A. V. (2016). Investigation of nickel chemical precipitation kinetics. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 26–31. doi: 10.15587/1729-4061.2016.59506

Grytsenko, O., Spišák, E., Dulebová, Ľ., Moravskii, V., Suberlyak, O. (2015). Sorption Capable Film Coatings with Variable Conductivity. Materials Science Forum, 818, 97–100. doi: 10.4028/www.scientific.net/msf.818.97

Tekce, H. S., Kumlutas, D., Tavman, I. H. (2007). Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites. Journal of Reinforced Plastics and Composites, 26 (1), 113–121. doi: 10.1177/0731684407072522

Biswas, S., Kar, G. P., Bose, S. (2015). Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: a compartmentalized approach. Nanoscale, 7 (26), 11334–11351. doi: 10.1039/c5nr01785h

Huang, X., Dai, B., Ren, Y., Xu, J., Zhu, P. (2015). Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition. Journal of Nanomaterials, 2015, 1–7. doi: 10.1155/2015/320306

Gargama, H., Thakur, A. K., Chaturvedi, S. K. (2015). Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications. Journal of Applied Physics, 117 (22), 224903. doi: 10.1063/1.4922411

Joseph, N., Thomas Sebastian, M. (2013). Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Materials Letters, 90, 64–67. doi: 10.1016/j.matlet.2012.09.014

Joseph, N., Singh, S. K., Sirugudu, R. K., Murthy, V. R. K., Ananthakumar, S., Sebastian, M. T. (2013). Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Materials Research Bulletin, 48 (4), 1681–1687. doi: 10.1016/j.materresbull.2012.11.115

Bhattacharya, S. K. (1986). Metal-Filled Polymers: Properties and Applications. New York, Basel, 376.

Delmonte, J. (1990). Metal Polymer Composites. Springer, Boston, MA, 250. doi: 10.1007/978-1-4684-1446-2

Toker, D., Azulay, D., Shimoni, N., Balberg, I., Millo, O. (2003). Tunneling and percolation in metal-insulator composite materials. Physical Review B, 68 (4). doi: 10.1103/physrevb.68.041403

Lee, S. H., Yu, S., Shahzad, F., Hong, J. P., Kim, W. N., Park, C. et. al. (2017). Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Composites Science and Technology, 144, 57–62. doi: 10.1016/j.compscitech.2017.03.016

Al-Saleh, M. H., Gelves, G. A., Sundararaj, U. (2011). Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding. Composites Part A: Applied Science and Manufacturing, 42 (1), 92–97. doi: 10.1016/j.compositesa.2010.10.003

Kim, H.-R., Fujimori, K., Kim, B.-S., Kim, I.-S. (2012). Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Composites Science and Technology, 72 (11), 1233–1239. doi: 10.1016/j.compscitech.2012.04.009

Arranz-Andrés, J., Pérez, E., Cerrada, M. L. (2012). Hybrids based on poly(vinylidene fluoride) and Cu nanoparticles: Characterization and EMI shielding. European Polymer Journal, 48 (7), 1160–1168. doi: 10.1016/j.eurpolymj.2012.04.006

Arranz-Andrés, J., Pulido-González, N., Fonseca, C., Pérez, E., Cerrada, M. L. (2013). Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability. Materials Chemistry and Physics, 142 (2-3), 469–478. doi: 10.1016/j.matchemphys.2013.06.038

Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, M., Tsimbalista, T., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder­like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 50–57. doi: 10.15587/1729-4061.2017.108462

Shalkauskas, M. (1985). Himicheskaya metallizaciya plastmass. Leningrad, 144.


GOST Style Citations


Moravskyi V. S. Metalizatsiya polivinilkhlorydnoho plastykatu khimichnym vidnovlenniam v rozchynakh // Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannia. 2016. Issue 841. P. 405–409.

Features of the production of metal-filled composites by metallization of polymeric raw materials / Moravskyi V. S., Dziaman I. Z., Suberliak S. A., Grytsenko O. M., Kuznetsova M. Y. // 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). doi: 10.1109/nap.2017.8190265 

Thermal conductivity of polymer-based composites: Fundamentals and applications / Chen H., Ginzburg V. V., Yang J., Yang Y., Liu W., Huang Y. et. al. // Progress in Polymer Science. 2016. Vol. 59. P. 41–85. doi: 10.1016/j.progpolymsci.2016.03.001 

Bishay I. K., Abd-El-Messieh S. L., Mansour S. H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder // Materials & Design. 2011. Vol. 32, Issue 1. P. 62–68. doi: 10.1016/j.matdes.2010.06.035 

Xue Q. The influence of particle shape and size on electric conductivity of metal–polymer composites // European Polymer Journal. 2004. Vol. 40, Issue 2. P. 323–327. doi: 10.1016/j.eurpolymj.2003.10.011 

Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies / Li H., John J. V., Byeon S. J., Heo M. S., Sung J. H., Kim K.-H., Kim I. // Progress in Polymer Science. 2014. Vol. 39, Issue 11. P. 1878–1907. doi: 10.1016/j.progpolymsci.2014.07.005 

Nikzad M., Masood S. H., Sbarski I. Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling // Materials & Design. 2011. Vol. 32, Issue 6. P. 3448–3456. doi: 10.1016/j.matdes.2011.01.056 

Luyt A. S., Molefi J. A., Krump H. Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites // Polymer Degradation and Stability. 2006. Vol. 91, Issue 7. P. 1629–1636. doi: 10.1016/j.polymdegradstab.2005.09.014 

Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites / Park H. J., Badakhsh A., Im I. T., Kim M.-S., Park C. W. // Applied Thermal Engineering. 2016. Vol. 107. P. 907–917. doi: 10.1016/j.applthermaleng.2016.07.053 

Conductive polymer composites with segregated structures / Pang H., Xu L., Yan D.-X., Li Z.-M. // Progress in Polymer Science. 2014. Vol. 39, Issue 11. P. 1908–1933. doi: 10.1016/j.progpolymsci.2014.07.007 

Investigation of nickel chemical precipitation kinetics / Grytsenko O. M., Suberlyak O. V., Moravskyі V. S., Hayduk A. V. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 1, Issue 6 (79). P. 26–31. doi: 10.15587/1729-4061.2016.59506 

Sorption Capable Film Coatings with Variable Conductivity / Grytsenko O., Spišák E., Dulebová Ľ., Moravskii V., Suberlyak O. // Materials Science Forum. 2015. Vol. 818. P. 97–100. doi: 10.4028/www.scientific.net/msf.818.97 

Tekce H. S., Kumlutas D., Tavman I. H. Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites // Journal of Reinforced Plastics and Composites. 2007. Vol. 26, Issue 1. P. 113–121. doi: 10.1177/0731684407072522 

Biswas S., Kar G. P., Bose S. Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: a compartmentalized approach // Nanoscale. 2015. Vol. 7, Issue 26. P. 11334–11351. doi: 10.1039/c5nr01785h 

Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition / Huang X., Dai B., Ren Y., Xu J., Zhu P. // Journal of Nanomaterials. 2015. P. 1–7. doi: 10.1155/2015/320306 

Gargama H., Thakur A. K., Chaturvedi S. K. Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications // Journal of Applied Physics. 2015. Vol. 117, Issue 22. P. 224903. doi: 10.1063/1.4922411 

Joseph N., Thomas Sebastian M. Electromagnetic interference shielding nature of PVDF-carbonyl iron composites // Materials Letters. 2013. Vol. 90. P. 64–67. doi: 10.1016/j.matlet.2012.09.014 

Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications / Joseph N., Singh S. K., Sirugudu R. K., Murthy V. R. K., Ananthakumar S., Sebastian M. T. // Materials Research Bulletin. 2013. Vol. 48, Issue 4. P. 1681–1687. doi: 10.1016/j.materresbull.2012.11.115 

Bhattacharya S. K. Metal-Filled Polymers: Properties and Applications. New York, Basel, 1986. 376 p.

Delmonte J. Metal Polymer Composites. Springer, Boston, MA, 1990. 250 p. doi: 10.1007/978-1-4684-1446-2 

Tunneling and percolation in metal-insulator composite materials / Toker D., Azulay D., Shimoni N., Balberg I., Millo O. // Physical Review B. 2003. Vol. 68, Issue 4. doi: 10.1103/physrevb.68.041403 

Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding / Lee S. H., Yu S., Shahzad F., Hong J. P., Kim W. N., Park C. et. al. // Composites Science and Technology. 2017. Vol. 144. P. 57–62. doi: 10.1016/j.compscitech.2017.03.016 

Al-Saleh M. H., Gelves G. A., Sundararaj U. Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding // Composites Part A: Applied Science and Manufacturing. 2011. Vol. 42, Issue 1. P. 92–97. doi: 10.1016/j.compositesa.2010.10.003 

Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization / Kim H.-R., Fujimori K., Kim B.-S., Kim I.-S. // Composites Science and Technology. 2012. Vol. 72, Issue 11. P. 1233–1239. doi: 10.1016/j.compscitech.2012.04.009 

Arranz-Andrés J., Pérez E., Cerrada M. L. Hybrids based on poly(vinylidene fluoride) and Cu nanoparticles: Characterization and EMI shielding // European Polymer Journal. 2012. Vol. 48, Issue 7. P. 1160–1168. doi: 10.1016/j.eurpolymj.2012.04.006 

Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability / Arranz-Andrés J., Pulido-González N., Fonseca C., Pérez E., Cerrada M. L. // Materials Chemistry and Physics. 2013. Vol. 142, Issue 2-3. P. 469–478. doi: 10.1016/j.matchemphys.2013.06.038 

Research into kinetic patterns of chemical metallization of powder­like polyvinylchloride / Moravskyi V., Dziaman I., Suberliak S., Kuznetsova M., Tsimbalista T., Dulebova L. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 12 (88). P. 50–57. doi: 10.15587/1729-4061.2017.108462 

Shalkauskas M. Himicheskaya metallizaciya plastmass. Leningrad, 1985. 144 p.







Copyright (c) 2018 Volodymyr Moravskyi, Anastasiia Kucherenko, Marta Kuznetsova, Iryna Dziaman, Oleksandr Grytsenko, Ludmila Dulebova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061