Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.131446

Keywords:

concentration of solutions, optimization, metal-polymer composites, functional composites, polyvinylchloride, chemical reduction, metal fillers

Abstract

Influence of concentration of components of chemical metallization solutions on the process of copper reduction on activated polyvinylchloride surface has been studied. It has been established that changes in concentrations of copper sulfate, trilon B and formaldehyde can effectively influence the metallization process. It was shown that the loss of stability of chemical metallization solutions and formation of colloidal solutions makes it is impossible to obtain a metallized polymeric material since copper reduction occurs in the solution volume. Copper reduction in the solution volume occurs because of presence of insoluble colloidal particles of copper hydroxide which are centers of nucleation of copper reduction. At such centers, copper reduction occurs as a result of reaction with formaldehyde and is accompanied by high volumes of hydrogen evolvement. It has been established that the formation of copper coating on an activated polymer surface occurs only with the use of true chemical metallization solutions. The main factor determining stability of chemical metallization solutions is complexing. It was shown that trilon B concentration under 40 mmol/l is not sufficient to bind all Cu2+ ions in a complex which prevents formation of insoluble copper hydroxide in an alkaline medium. The growth of trilon B concentration above 53 mmol/l results in reduction of a portion of copper in a form of hydroxide and formation of true solutions. It has been established that concentration of copper sulfate and alkali exerts the main influence on the mechanism of copper reduction in the case of true solutions. The growth of pH of chemical metallization solutions above 12 brings about an increase in the portion of copper that is reduced by the exchange reaction with zinc.

Author Biographies

Volodymyr Moravskyi, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Chemical Technology of Plastics Processing

Anastasiia Kucherenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Engineer

Department of Chemical Technology of Plastics Processing

Marta Kuznetsova, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Thermal Engineering and Thermal Power Stations

Iryna Dziaman, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Chemical Technology of Plastics Processing

Oleksandr Grytsenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Chemical Technology of Plastics Processing

Ludmila Dulebova, Technical University of Kosice Letniaya str., 9, Kosice, Slovak Republic, 04200

PhD, Associate Professor

Department of Automobile Production

References

  1. Moravskyi, V. S. (2016). Metalizatsiya polivinilkhlorydnoho plastykatu khimichnym vidnovlenniam v rozchynakh. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannia, 841, 405–409.
  2. Moravskyi, V. S., Dziaman, I. Z., Suberliak, S. A., Grytsenko, O. M., Kuznetsova, M. Y. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials. 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). doi: 10.1109/nap.2017.8190265
  3. Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y. et. al. (2016). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, 41–85. doi: 10.1016/j.progpolymsci.2016.03.001
  4. Bishay, I. K., Abd-El-Messieh, S. L., Mansour, S. H. (2011). Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Materials & Design, 32 (1), 62–68. doi: 10.1016/j.matdes.2010.06.035
  5. Xue, Q. (2004). The influence of particle shape and size on electric conductivity of metal–polymer composites. European Polymer Journal, 40 (2), 323–327. doi: 10.1016/j.eurpolymj.2003.10.011
  6. Li, H., John, J. V., Byeon, S. J., Heo, M. S., Sung, J. H., Kim, K.-H., Kim, I. (2014). Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies. Progress in Polymer Science, 39 (11), 1878–1907. doi: 10.1016/j.progpolymsci.2014.07.005
  7. Nikzad, M., Masood, S. H., Sbarski, I. (2011). Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Materials & Design, 32 (6), 3448–3456. doi: 10.1016/j.matdes.2011.01.056
  8. Luyt, A. S., Molefi, J. A., Krump, H. (2006). Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polymer Degradation and Stability, 91 (7), 1629–1636. doi: 10.1016/j.polymdegradstab.2005.09.014
  9. Park, H. J., Badakhsh, A., Im, I. T., Kim, M.-S., Park, C. W. (2016). Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Applied Thermal Engineering, 107, 907–917. doi: 10.1016/j.applthermaleng.2016.07.053
  10. Pang, H., Xu, L., Yan, D.-X., Li, Z.-M. (2014). Conductive polymer composites with segregated structures. Progress in Polymer Science, 39 (11), 1908–1933. doi: 10.1016/j.progpolymsci.2014.07.007
  11. Grytsenko, O. M., Suberlyak, O. V., Moravskyі, V. S., Hayduk, A. V. (2016). Investigation of nickel chemical precipitation kinetics. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 26–31. doi: 10.15587/1729-4061.2016.59506
  12. Grytsenko, O., Spišák, E., Dulebová, Ľ., Moravskii, V., Suberlyak, O. (2015). Sorption Capable Film Coatings with Variable Conductivity. Materials Science Forum, 818, 97–100. doi: 10.4028/www.scientific.net/msf.818.97
  13. Tekce, H. S., Kumlutas, D., Tavman, I. H. (2007). Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites. Journal of Reinforced Plastics and Composites, 26 (1), 113–121. doi: 10.1177/0731684407072522
  14. Biswas, S., Kar, G. P., Bose, S. (2015). Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: a compartmentalized approach. Nanoscale, 7 (26), 11334–11351. doi: 10.1039/c5nr01785h
  15. Huang, X., Dai, B., Ren, Y., Xu, J., Zhu, P. (2015). Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition. Journal of Nanomaterials, 2015, 1–7. doi: 10.1155/2015/320306
  16. Gargama, H., Thakur, A. K., Chaturvedi, S. K. (2015). Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications. Journal of Applied Physics, 117 (22), 224903. doi: 10.1063/1.4922411
  17. Joseph, N., Thomas Sebastian, M. (2013). Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Materials Letters, 90, 64–67. doi: 10.1016/j.matlet.2012.09.014
  18. Joseph, N., Singh, S. K., Sirugudu, R. K., Murthy, V. R. K., Ananthakumar, S., Sebastian, M. T. (2013). Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Materials Research Bulletin, 48 (4), 1681–1687. doi: 10.1016/j.materresbull.2012.11.115
  19. Bhattacharya, S. K. (1986). Metal-Filled Polymers: Properties and Applications. New York, Basel, 376.
  20. Delmonte, J. (1990). Metal Polymer Composites. Springer, Boston, MA, 250. doi: 10.1007/978-1-4684-1446-2
  21. Toker, D., Azulay, D., Shimoni, N., Balberg, I., Millo, O. (2003). Tunneling and percolation in metal-insulator composite materials. Physical Review B, 68 (4). doi: 10.1103/physrevb.68.041403
  22. Lee, S. H., Yu, S., Shahzad, F., Hong, J. P., Kim, W. N., Park, C. et. al. (2017). Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Composites Science and Technology, 144, 57–62. doi: 10.1016/j.compscitech.2017.03.016
  23. Al-Saleh, M. H., Gelves, G. A., Sundararaj, U. (2011). Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding. Composites Part A: Applied Science and Manufacturing, 42 (1), 92–97. doi: 10.1016/j.compositesa.2010.10.003
  24. Kim, H.-R., Fujimori, K., Kim, B.-S., Kim, I.-S. (2012). Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Composites Science and Technology, 72 (11), 1233–1239. doi: 10.1016/j.compscitech.2012.04.009
  25. Arranz-Andrés, J., Pérez, E., Cerrada, M. L. (2012). Hybrids based on poly(vinylidene fluoride) and Cu nanoparticles: Characterization and EMI shielding. European Polymer Journal, 48 (7), 1160–1168. doi: 10.1016/j.eurpolymj.2012.04.006
  26. Arranz-Andrés, J., Pulido-González, N., Fonseca, C., Pérez, E., Cerrada, M. L. (2013). Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability. Materials Chemistry and Physics, 142 (2-3), 469–478. doi: 10.1016/j.matchemphys.2013.06.038
  27. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, M., Tsimbalista, T., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder­like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 50–57. doi: 10.15587/1729-4061.2017.108462
  28. Shalkauskas, M. (1985). Himicheskaya metallizaciya plastmass. Leningrad, 144.

Downloads

Published

2018-05-17

How to Cite

Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dziaman, I., Grytsenko, O., & Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 3(12 (93), 40–47. https://doi.org/10.15587/1729-4061.2018.131446

Issue

Section

Materials Science