Development of calculation schemes for the combined extrusion to predict the shape formation of axisymmetric parts with a flange

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.131766

Keywords:

combined extrusion, parts with a flange, phased form change, process of deformation

Abstract

We have developed calculation schemes for the process of combined radial-reverse extrusion of parts with a flange. Based on the energy method, we have derived formulae for calculating the reduced pressure of deformation and a phased increase in the dimensions of a semi-finished product. Relevance of the research is based on ensuring the simplification of estimation of the application of a given deformation process to obtain parts with a required configuration. In addition, we have proved the efficiency of determining the limit of using the derived calculation scheme for ratios 2h1R2/(R22–R12)<1.

We analyzed a product range manufactured at the enterprises of machine-building and instrument-making, which includes a significant number of hollow parts with flanges and branches of various shapes. It was substantiated that the use of combined extrusion schemes in the manufacture of parts of the type «a cup with a flange», when compared to employing simple deformation techniques, improves technological possibilities of the process. That is achieved through the reduction in energy costs, as well as in the number of technological transitions, and through making the shape of the parts obtained more complex. We confirmed the lack of proper studies into technologies for the implementation of combined extrusion schemes and the absence of appropriate technological recommendations. We determined the power mode of extrusion that corresponds to reality and estimated a possibility to control the outflow of metal at deformation. A study was conducted into the process of cold combined extrusion of hollow parts with a flange; the calculation schemes of the process were proposed. We modeled the process of combined extrusion based on the experimental-analytical method and established patterns in the shape formation of parts with a flange due to the geometrical and technological parameters. Data were acquired on the phased form change in a semi-finished product in the process of deformation. It was confirmed that the proposed models simplify the development of technological recommendations to determine the power mode of extrusion and to control the outflow of metal during deformation process.

Author Biographies

Kateryna Vlasenko, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Pedagogical Sciences, Professor

Department of Higher Mathematics

Natalia Hrudkina, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

PhD

Department of Higher Mathematics

Irina Reutova, State Higher Educational Establishment « Pryazovskyi State Technical University» Universytets'ka str., 7, Mariupol, Ukraine, 87555

PhD, Associate Professor

Department of Higher and Applied Mathematics

Olena Chumak, Donbas National Academy of Civil Engineering and Architecture Heroiv Nebesnoi Sotni str., 14, Kramatorsk, Ukraine, 84333

PhD

Department of General Engineering

References

  1. Zhang, S. H., Wang, Z. R., Wang, Z. T., Xu, Y., Chen, K. B. (2004). Some new features in the development of metal forming technology. Journal of Materials Processing Technology, 151 (1-3), 39–47. doi: 10.1016/j.jmatprotec.2004.04.098
  2. Choi, H.-J., Choi, J.-H., Hwang, B.-B. (2001). The forming characteristics of radial–backward extrusion. Journal of Materials Processing Technology, 113 (1-3), 141–147. doi: 10.1016/s0924-0136(01)00703-8
  3. Chang, Y. S., Hwang, B. B. (2000). A study on the forming characteristics of radial extrusions combined with forward extrusion. Transactions of materials processing, 9 (3), 242–248.
  4. Cho, H. Y., Min, G. S., Jo, C. Y., Kim, M. H. (2003). Process design of the cold forging of a billet by forward and backward extrusion. Journal of Materials Processing Technology, 135 (2-3), 375–381. doi: 10.1016/s0924-0136(02)00870-1
  5. Alieva, L. I. (2016). Processy kombinirovannogo deformirovaniya i vydavlivaniya. Obrabotka materialov davleniem, 1 (42), 100–108.
  6. Tarasov, A. F. (2002). Perspektivy ispol'zovaniya kombinirovannyh metodov obrabotki metallov davleniem. Udoskonalennia protsesiv i obladnannia obrobky tyskom v metalurhiyi i mashynobuduvanni, 216–220.
  7. Aliev, I. S., Solodun, E. M., Kryuger, K. (2000). Modelirovanie processov kombinirovannogo vydavlivaniya. Mekhanika deformirovannogo tverdogo tela i obrabotka metallov davleniem, 21–27.
  8. Stepanskiy, L. G. (1979). Raschety processov obrabotki metallov davleniem. Moscow: Mashinostroenie, 215.
  9. Jain, S. C., Bramley, A. N., Lee, C. H., Kobayashi, S. (1971). Theory and experiment in extrusion forging. Adv. Mach. Tool. Des. and Res. 1970. Oxford e.a., B, 1097–1115.
  10. Alieva, L. I., Grudkina, N. S., Kryuger, K. (2017). The simulation of radial-backward extrusion processes of hollow parts. Mechanics and Advanced Technologies, 1 (79), 91–99. doi: 10.20535/2521-1943.2017.79.95873
  11. Keife, H. (1985). A New Technique for Determination of Preforms in Closed Die Forging of Axi-Symmetric Products. Proceedings of the Twenty-Fifth International Machine Tool Design and Research Conference, 473–477. doi: 10.1007/978-1-349-07529-4_56
  12. Choi, H.-J., Choi, J.-H., Hwang, B.-B. (2001). The forming characteristics of radial–backward extrusion. Journal of Materials Processing Technology, 113 (1-3), 141–147. doi: 10.1016/s0924-0136(01)00703-8
  13. Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: 10.1016/j.matdes.2008.08.025
  14. Aliiev, I., Aliieva, L., Grudkina, N., Zhbankov, I. (2011). Prediction of the Variation of the Form in the Processes of Extrusion. Metallurgical and Mining Industry: scientific and technical journal, 3 (7), 17–22.
  15. Golovin, V. A., Filippov, Yu. K., Ignatenko, V. N. (2005). Osobennosti kinematiki techeniya metalla pri kombinirovannom holodnom vydavlivanii polyh detaley s flancem zadannyh razmerov. Prioritety razvitiya otechestvennogo avtotraktorostroeniya i podgotovki inzhenernyh i nauchnyh kadrov: materialy 49-y Mezhdunarodnoy nauchno-tekhnicheskoy konferencii AAI. Sekciya 6 «Zagotovitel'nye proizvodstva v mashinostroenii. Podsekciya «MiTOMD». Moscow: MAMI, 18–20.
  16. Shestakov, N. A. (1998). Energeticheskie metody rascheta processov obrabotki metallov davleniem. Moscow: MGIU, 125.
  17. Chudakov, P. D., Gusinskiy, V. I. (1974). Nestacionarnoe plasticheskoe techenie uprochnyayushchegosya materiala. Issledovaniya v oblasti plastichnosti i obrabotki metallov davleniem, 34–41.
  18. Alieva, L. I., Grudkina, N. S. (2012). Issledovanie deformirovannogo sostoyaniya pri kombinirovannom radial'no-obratnom vydavlivanii polyh detaley s flancem. Sostoyanie i perspektivy razvitiya sel'skohozyaystvennogo mashinostroeniya: materialy 5-y mezhdunar. nauch.-prakt. konf. Rostov-na-Donu: DonGTU, 199–202.

Downloads

Published

2018-05-22

How to Cite

Vlasenko, K., Hrudkina, N., Reutova, I., & Chumak, O. (2018). Development of calculation schemes for the combined extrusion to predict the shape formation of axisymmetric parts with a flange. Eastern-European Journal of Enterprise Technologies, 3(1 (93), 51–59. https://doi.org/10.15587/1729-4061.2018.131766

Issue

Section

Engineering technological systems