Formation of oxide fuels on vt6 alloy in the conditions of anodial polarization in solutions H2SO4

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.132521

Keywords:

oxide films, titanium dioxide, implant, electrochemical oxidation, forming dependence

Abstract

We report results of research into a process of electrochemical oxidation of the titanium alloy VT6 in solutions of H2SO4. It is shown that the character of forming dependences for alloy samples depends on the magnitude of current density. At j<0.5 А·dm–2, a continuous oxide film does not form at the surface of the alloy; the assigned value for voltage is not reached. At j>0.5 А·dm–2, a continuous oxide film forms at the surface of the alloy; a linear character of dependences is observed. The films obtained under these conditions relate to the interferential-colored films. A film thickness limit is defined by the assigned magnitude of U and does not depend on other parameters of the electrolysis. For the series of identical values for U, dependence of τ‒j has a linear shape. The color of the oxide film is determined by the value of voltage and does not depend on the current density and electrolyte concentration. We established a correspondence between a color of the film and the magnitude of U in the range of 10‒100 V. This effect is due to the fact that the formation of a film at anodic polarization occurs in the presence of a gradient in the potential whose quantity for titanium is a constant magnitude. Increasing the assigned magnitude of U leads to a proportional increase in the maximum thickness of the oxide, which determines its color. Results of our study on determining the effect of electrolysis parameters on the characteristics of oxide films made it possible to substantiate the mode for obtaining TiO2 films at the surface of the alloy VT6. The data obtained form the basis for the development of technology for electrochemical oxidation of titanium implants in order to render functional properties to their surface.

Author Biographies

Alexei Pilipenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of technical electrochemistry

Hanna Pancheva, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of labor and environment protection

Viktoriya Deineka, National University of Civil Defencen of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Assosiate Professor

Department of special chemistry and chemical technology

Roman Vorozhbiyan, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of  automation of technological systems and environmental monitoring

Marina Chyrkina, National University of Civil Defencen of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Assosiate Professor

Department of special chemistry and chemical technology

References

  1. Ellerbrock, D., Macdonald, D. D. (2014). Passivity of titanium, part 1: film growth model diagnostics. Journal of Solid State Electrochemistry, 18 (5), 1485–1493. doi: 10.1007/s10008-013-2334-6
  2. Popa, M. V., Vasilescu, E., Drob, P., Anghel, M., Vasilescu, C., Mirza-Rosca, I., Santana Lopez, A. (2002). Anodic passivity of some titanium base alloys in aggressive environments. Materials and Corrosion, 53 (1), 51–55. doi: 10.1002/1521-4176(200201)53:1<51::aid-maco51>3.0.co;2-6
  3. Garg, H., Bedi, G., Garg, A. (2012). Implant surface modifiations: a review. J. Clin. Diagn. Res., 6 (2), 319–324.
  4. Liu, X., Chu, P., Ding, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47 (3-4), 49–121. doi: 10.1016/j.mser.2004.11.001
  5. Mandracci, P., Mussano, F., Rivolo, P., Carossa, S. (2016). Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology. Coatings, 6 (1), 7. doi: 10.3390/coatings6010007
  6. John, A. A., Jaganathan, S. K., Supriyanto, E., Manikandan, A. (2016). Surface Modification of Titanium and its Alloys for the Enhancement of Osseointegration in Orthopaedics. Current Science, 111 (6), 1003. doi: 10.18520/cs/v111/i6/1003-1015
  7. Diefenbeck, M., Mückley, T., Schrader, C., Schmidt, J., Zankovych, S., Bossert, J. et. al. (2011). The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats. Biomaterials, 32 (32), 8041–8047. doi: 10.1016/j.biomaterials.2011.07.046
  8. Park, E.-J., Song, Y.-H., Hwang, M.-J., Song, H.-J., Park, Y.-J. (2015). Surface Characterization and Osteoconductivity Evaluation of Micro/Nano Surface Formed on Titanium Using Anodic Oxidation Combined with H2O2 Etching and Hydrothermal Treatment. Journal of Nanoscience and Nanotechnology, 15 (8), 6133–6136. doi: 10.1166/jnn.2015.10469
  9. Lubas, M., Sitarz, M., Jasinski, J. J., Jelen, P., Klita, L., Podsiad, P., Jasinski, J. (2014). Fabrication and characterization of oxygen – Diffused titanium using spectroscopy method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 883–886. doi: 10.1016/j.saa.2014.06.067
  10. Sul, Y.-T., Johansson, C. B., Jeong, Y., Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23 (5), 329–346. doi: 10.1016/s1350-4533(01)00050-9
  11. Sul, E. T., Byon, E., Wennerberg, A. (2008). Surface characteristics of electrochemically oxidized implants and acid-etched implants: surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness. Int. J. Oral Maxillofac. Implants, 23 (4), 631–640.
  12. Fojt, J. (2012). Ti–6Al–4V alloy surface modification for medical applications. Applied Surface Science, 262, 163–167. doi: 10.1016/j.apsusc.2012.04.012
  13. Veiga, C., Davim, J. P., Loureiro, A. J. R. (2012). Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci., 2, 14–34.
  14. Pilipenko, A. I., Pospelov, A. P., Kamarchuk, G. V., Bondarenko, I. S., Shablo, A. A., Bondarenko, S. I. (2011). Point-contact sensory nanostructure modeling. Functional materials, 18 (3), 324–327.
  15. Pospelov, A. P., Pilipenko, A. I., Kamarchuk, G. V., Fisun, V. V., Yanson, I. K., Faulques, E. (2014). A New Method for Controlling the Quantized Growth of Dendritic Nanoscale Point Contacts via Switchover and Shell Effects. The Journal of Physical Chemistry C, 119 (1), 632–639. doi: 10.1021/jp506649u
  16. Adya, N., Alam, M., Ravindranath, T., Mubeen, A., Saluja, B. (2005). Corrosion in titanium dental implants: literature review. The Journal of Indian Prosthodontic Society, 5 (3), 126. doi: 10.4103/0972-4052.17104
  17. Mohammed, M. T., Khan, Z. A., Siddiquee, A. N. (2014). Surface Modifications of Titanium Materials for developing Corrosion Behavior in Human Body Environment: A Review. Procedia Materials Science, 6, 1610–1618. doi: 10.1016/j.mspro.2014.07.144
  18. Wang, G., Li, J., Lv, K., Zhang, W., Ding, X., Yang, G. et. al. (2016). Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific Reports, 6 (1). doi: 10.1038/srep31769
  19. Hayle, S. T. (2014). Synthesis and Characterization of Titanium Oxide Nanomaterials Using Sol-Gel Method. American Journal of Nanoscience and Nanotechnology, 2 (1), 1. doi: 10.11648/j.nano.20140201.11
  20. De Maeztu, M. A., Alava, J. I., Gay-Escoda, C. (2003). Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants. Clinical Oral Implants Research, 14 (1), 57–62. doi: 10.1034/j.1600-0501.2003.140108.x
  21. Pilipenko, A., Pancheva, H., Reznichenko, A., Myrgorod, O., Miroshnichenko, N., Sincheskul, A. (2017). The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 21–28. doi: 10.15587/1729-4061.2017.95989
  22. Pancheva, H., Reznichenko, A., Miroshnichenko, N., Sincheskul, A., Pilipenko, A., Loboichenko, V. (2017). Study into the influence of concentration of ions of chlorine and temperature of circulating water on the corrosion stability of carbon steel and cast iron. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 59–64. doi: 10.15587/1729-4061.2017.108908
  23. Sincheskul, A., Pancheva, H., Loboichenko, V., Avina, S., Khrystych, O., Pilipenko, A. (2017). Design of the modified oxide-nickel electrode with improved electrical characteristics. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 23–28. doi: 10.15587/1729-4061.2017.112264
  24. Blondeau, G., Froelicher, M., Froment, M., Hugot-Le-Goff, A. (1977). Structure and growth of anodic oxide films on titanium and TA6V alloy. Journal of the Less Common Metals, 56 (2), 215–222. doi: 10.1016/0022-5088(77)90043-1
  25. Aladjem, A. (1973). Anodic oxidation of titanium and its alloys. Journal of Materials Science, 8 (5), 688–704. doi: 10.1007/bf00561225

Downloads

Published

2018-05-29

How to Cite

Pilipenko, A., Pancheva, H., Deineka, V., Vorozhbiyan, R., & Chyrkina, M. (2018). Formation of oxide fuels on vt6 alloy in the conditions of anodial polarization in solutions H2SO4. Eastern-European Journal of Enterprise Technologies, 3(6 (93), 33–38. https://doi.org/10.15587/1729-4061.2018.132521

Issue

Section

Technology organic and inorganic substances