Substantiation of the mechanism of interaction between the carbohydrates of rye­wheat flour and nanoparticles of the polyfunctional food additive "Magnetofооd"

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.133373

Keywords:

polyfunctional food additive, carbohydrate complex of rye-wheat flour, mechanism of interaction, "cluster-capillary" model

Abstract

Moisture-retaining capacity (MRC) is one of the most important functional-technological properties. The food additive "Magnetofood" produces a comprehensive effect, including MRC. That explains the importance of studying the MRC mechanism of "Magnetofood". We have established the mechanism of interaction between nanoparticles (NP) of the food additive "Magnetofood" and the functional groups of biopolymers of the carbohydrate complex of rye-wheat flour. A "cluster-capillary" MRC model of "Magnetofood" with dough carbohydrates is proposed. Water molecules are initially adsorbed, particularly at the surface of starch grains and in micro capillaries. The "Magnetofood" NP, due to their nano dimensions, active and ionized surface, biocompatibility with the polymeric molecules of carbohydrates, easily penetrate their pores (micro-capillaries). The "Magnetofood" NP possess a high chemical potential; they, consequently, activate, for example, the surface of starch grains and the inner surface of capillaries. The nanoparticles of "Magnetofood" form complexes with the ОН-groups and ether of oxygen of amylose and amylopectin of starch through coordination bonds. There emerge the supramolecular ensembles "Magnetofood"-carbohydrate" of the "cluster" type. The "Magnetofood" NP electrostatically interact also with the dipoles of water. Strong aqua complexes thereby form. The Н2О molecules then penetrate the least organized sections of chains of polysaccharide macromolecules. They are retained there by the hydrogen bonds with the "Magnetofood" dipoles and the ionogenic groups of carbohydrates: atoms of hydrogen and oxygen of the ОН-groups of D- glucopyranose residues. Aqua complexes form around the "Magnetofood" NP; solvato associates form in the "clusters". Polymer chain diverge thereby improving the penetration of Н2О dipoles inside the carbohydrate. Such water absorption weakens the intra-macro-molecular bonds in the dense layers of the polysaccharide and contributes to the penetration of moisture inside. We have experimentally determined that the food additive "Magnetofood" produces a comprehensive effect: sorption, complexing, moisture- and fat-retaining. That leads to an increase in yield and improves quality of bakery products. In this context, the research results are of interest not only for Ukraine but also for the scientific community in other countries.

Author Biographies

Iryna Tsykhanovska, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor

Department of food and chemical technologies

 

Victoria Evlash, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Chemistry, Microbiology and Food Hygiene

Alexandr Alexandrov, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor, Head of Department

Department of food and chemical technologies

Tetiana Lazarieva, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

Doctor of Pedagogical Sciences, Professor

Department of Food and Chemical Technology

Tetiana Yevlash, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Accounting and Auditing

References

  1. Obzor rynka hlebobulochnyh i konditerskih izdeliy Ukrainy (2012). Hlebopekarskoe i konditerskoe Delo, 3, 6.
  2. Volkova, S. F., Zolotuhina, A. O. (2012). Sostoyanie i perspektivy razvitiya hlebopekarnoy promyshlennosti Ukrainy. Ekonomika kharchovoi promyslovosti, 3 (15), 51–55.
  3. Yurchak, V. G., Berzina, N. I., Shmarovoz, V. M., Prishchepa, M. P. (1989). Opredelenie svyazannoy vody indikatornym metodom v hlebopekarnom proizvodstve. Izvestiya Vuzov. Pishchevaya tekhnologiya, 4, 78–80.
  4. Auerman, L. Ya.; Puchkovaya, L. I. (Ed.) (2003). Tekhnologiya hlebopekarnogo proizvodstva. Sankt-Peterburg: Professiya, 253.
  5. Alexandrov, A., Tsykhanovska, I., Gontar, T., Kokodiy, N., Dotsenko, N. (2016). The study of nanoparticles of magnitite of the lipid-magnetite suspensions by methods of photometry and electronic microscopy. Eastern-European Journal of Enterprise Technologies, 4 (11 (82)), 51. doi: 10.15587/1729-4061.2016.76105
  6. Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Svidlo, K., Gontar, T. (2017). Design of technology for the rye-wheat bread “Kharkivski rodnichok” with the addition of polyfunctional food additive “Magnetofооd.” Eastern-European Journal of Enterprise Technologies, 6 (11 (90)), 48–58. doi: 10.15587/1729-4061.2017.117279
  7. Ilyuha, N. G., Barsova, Z. V., Tsykhanovska, I., Kovalenko, V. A. (2010). Tekhnologiya proizvodstva i pokazateli kachestva pishchevoy dobavki na osnove magnetita. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejet/article/view/5847/5271
  8. Chaudhry, О., Castle, P., Watkins, R. (2010). Nanotechnoiogy in food. RSC Publishing, 300.
  9. Polumbryk, M. O. (2011). Nanotekhnolohiyi v kharchovykh produktakh. Kharchova promyslovist, 10, 319–322.
  10. Sozer, N., Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27 (2), 82–89. doi: 10.1016/j.tibtech.2008.10.010
  11. Polumbryk, M. O. (2011). Vuhlevody v kharchovykh produktakh i zdorovia liudyny. Kyiv: Akademperiodyka, 487.
  12. Baranov, D. A., Gubin, S. P. (2009). Magnitnye nanochasticy: dostizheniya i problemy himicheskogo sinteza. Radioelektronika. Nanosistemy. Informacionnye tekhnologii, 1 (1-2), 129–145.
  13. Gubin, S. P., Koksharov, Y. A., Khomutov, G. B., Yurkov, G. Y. (2005). Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 74 (6), 489–520. doi: 10.1070/rc2005v074n06abeh000897
  14. Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Svidlo, K., Gontar, T. et. al. (2018). Substantiation of the mechanism of interaction between biopolymers of rye­and­wheat flour and the nanoparticles of the magnetofооd food additive in order to improve moisture­retaining capacity of dough. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 70–80. doi: 10.15587/1729-4061.2018.126358
  15. Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazareva, T., Svidlo, K., Gontar, T. et. al. (2018). Investigation of the moisture-retaining power of rye-wheat gluten and flour with polyfunctional food supplement “Magnetofооd.” EUREKA: Life Sciences, 2, 67–76. doi: 10.21303/2504-5695.2018.00611
  16. Kabachnyi, V. I., Hrytsan, L. D., Tomarovska, T. O. et. al.; Kabachnyi, V. I. (Ed.) (2015). Fizychna ta koloidna khimiya. Kharkiv: NFaU: Zoloti storinky, 432.
  17. Ershov, D. A. (2014). Kolloidnaya himiya. Fizicheskaya himiya dispersnyh sistem. Moscow: Izd. gruppa «GEOTAR-Media», 352.
  18. Litvyak, V. V., Roslyakov, Yu. F., Butrim, S. M., Kozlova, L. N.; Roslyakov, Yu. F. (Ed.) (2013). Krahmal i krahmaloprodukty. Krasnodar: Izd. FGBOUVPO «KubGTU», 204.
  19. Lovkis, Z. V., Litvyak, V. V., Petyushev, N. N. (2007). Tekhnologiya krahmala i krahmaloproduktov. Minsk: Asobnyy, 178.
  20. Rihter, M., Augustat, Z., Shirbaum, F. (1975). Izbrannye metody issledovaniya krahmala. Moscow: Pishchevaya promyshlennost', 252.
  21. Tregubov, N. N., Zharova, E. Ya., Zhushman, A. I., Sidorova, E. K.; Tregubov, N. N. (Ed.) (1981). Tekhnologiya krahmala i krahmaloproduktov. Moscow: Legkaya i pishchevaya prom-st', 472.
  22. Ugrozov, V. V., Shebershneva, N. N., Filippov, A. N., Sidorenko, Y. I. (2008). Sorption and desorption of water vapor by grains of native starch of some crops. Colloid Journal, 70 (3), 366–371. doi: 10.1134/s1061933x08030150
  23. Klimovskiy, D. N., Stabnikov, V. N.; Malchenko, A. L. (Ed.) (1980). Tekhnologiya spirta. Moscow: Pishchepromizdat, 356.
  24. Kul'man, A. G.; Rebinder, P. A. (Ed.) (1983). Fizicheskaya i kolloidnaya himiya. Moscow: Pishchepromizdat, 586.
  25. Matveeva, I. V., Velickaya, I. G. (1998). Pishchevye dobavki i hlebopekarnye uluchshiteli v proizvodstve hleba. Novosibirsk: Sib. univ. izd-vo, 328.
  26. Maforimbo, E., Skurray, G. R., Nguyen, M. (2007). Evaluation of l-ascorbic acid oxidation on SH concentration in soy-wheat composite dough during resting period. LWT – Food Science and Technology, 40 (2), 338–343. doi: 10.1016/j.lwt.2005.09.008
  27. Rosell, C. M., Wang, J., Aja, S., Bean, S., Lookhart, G. (2003). Wheat Flour Proteins as Affected by Transglutaminase and Glucose Oxidase. Cereal Chemistry Journal, 80 (1), 52–55. doi: 10.1094/cchem.2003.80.1.52
  28. Tamazova, S. U., Lisovoy, V. V., Pershakova, T. V., Kasimirova, M. A. (2016). Food supplements based on vegetable raw materials in the production of baked goods and pastries. Polythematic Online Scientific Journal of Kuban State Agrarian University, 122 (08), 1–8. doi: 10.21515/1990-4665-122-076
  29. Specifikacii dlya pishchevyh dobavok i receptury. Citrusovye volokna Herbacel AQ Plus – tip N. Available at: http://specin.ru/kletchatka/109.htm
  30. Gorshunova, K. D., Semenova, P. A., Bessonov, V. V. (2012). Vzaimodeystvie gidrokolloidov i vodorastvorimyh vitaminov pri konstruirovanii obogashchennyh pishchevyh produktov. Pishchevaya promyshlennost', 11, 46–49.
  31. Renzyaeva, T. V., Tubol'ceva, A. S., Ponkratova, E. K., Lugovaya, A. V., Kazanceva, A. V. (2014). Funkcional'no-tekhnologicheskie svoystva poroshkoobraznogo syr'ya i pishchevyh dobavok v proizvodstve konditerskih izdeliy. Tekhnika i tekhnologiya pishchevyh proizvodstv, 4, 43–49.
  32. Drobot, V. I. (2008). Ispol'zovanie netradicionnogo syr'ya v hlebopekarnoy promyshlennosti. Kyiv: Urozhay, 152.
  33. Martins, Z. E., Pinho, O., Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science & Technology, 67, 106–128. doi: 10.1016/j.tifs.2017.07.003
  34. Lai, W. T., Khong, N. M. H., Lim, S. S., Hee, Y. Y., Sim, B. I., Lau, K. Y., Lai, O. M. (2017). A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends in Food Science & Technology, 59, 148–160. doi: 10.1016/j.tifs.2016.11.014
  35. Dziki, D., Różyło, R., Gawlik-Dziki, U., Świeca, M. (2014). Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends in Food Science & Technology, 40 (1), 48–61. doi: 10.1016/j.tifs.2014.07.010
  36. Torres-León, C., Rojas, R., Contreras-Esquivel, J. C., Serna-Cock, L., Belmares-Cerda, R. E., Aguilar, C. N. (2016). Mango seed: Functional and nutritional properties. Trends in Food Science & Technology, 55, 109–117. doi: 10.1016/j.tifs.2016.06.009
  37. Bharath Kumar, S., Prabhasankar, P. (2014). Low glycemic index ingredients and modified starches in wheat based food processing: A review. Trends in Food Science & Technology, 35 (1), 32–41. doi: 10.1016/j.tifs.2013.10.007
  38. Ngemakwe, P. N., Le Roes-Hill, M., Jideani, V. (2014). Advances in gluten-free bread technology. Food Science and Technology International, 21 (4), 256–276. doi: 10.1177/1082013214531425
  39. Bird, L. G., Pilkington, C. L., Saputra, A., Serventi, L. (2017). Products of chickpea processing as texture improvers in gluten-free bread. Food Science and Technology International, 23 (8), 690–698. doi: 10.1177/1082013217717802
  40. García-Segovia, P., Pagán-Moreno, M. J., Lara, I. F., Martínez-Monzó, J. (2017). Effect of microalgae incorporation on physicochemical and textural properties in wheat bread formulation. Food Science and Technology International, 23 (5), 437–447. doi: 10.1177/1082013217700259
  41. Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazareva, T., Yevlash, T. (2018). Investigation of the water-retaining capacity of the carbohydrate complex of rye-wheat dough with addition of polyfunctional food supplement “Magnetofооd”. EUREKA: Life Sciences, 3, 56–64. doi: 10.21303/2504-5695.2018.00662
  42. Ershov, P. S. (2004). Sbornik receptur na hleb i hlebobulochnye izdeliya. Sankt-Peterburg: Profi-inform, 190.

Downloads

Published

2018-06-11

How to Cite

Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., & Yevlash, T. (2018). Substantiation of the mechanism of interaction between the carbohydrates of rye­wheat flour and nanoparticles of the polyfunctional food additive "Magnetofооd". Eastern-European Journal of Enterprise Technologies, 3(11 (93), 59–68. https://doi.org/10.15587/1729-4061.2018.133373

Issue

Section

Technology and Equipment of Food Production