DOI: https://doi.org/10.15587/1729-4061.2018.133465

Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries

Valerii Kotok, Vadym Kovalenko, Sergey Vlasov

Abstract


Layered double hydroxides with different ratios of nickel and aluminum in the presence of Ag + ions and without silver have been synthesized: Ni: Al – 80 %: 20 %, Ni: Al: Ag – 80 %: 15 %: 5 % and 75 %: 15 %: 5 %. The obtained nickel hydroxide powders have a structure similar to α-Ni(OH)2 with a large number of crystal lattice defects. As a result of galvanostatic charge-discharge cycling, it was revealed that the addition of silver in the chemical synthesis stage increases the hydroxide utilization coefficient at fast discharges but decrease it at slow discharges. A possible mechanism that explains the influence of added silver during synthesis on discharge characteristics of hydroxide powders was proposed. The mechanism is that silver oxide, which is a semiconductor, is mixed with hydroxide and increases the specific conductivity of the powder. Increased electrical conductivity has a positive effect on charge effectiveness, because the initial phase has lower electrical conductivity than the oxidized form – NiOOH. Because the charge involves two processes – the main process of active material charging and evolution of molecular oxygen, the electrical conductivity would play a key role in the electrode charging. At low electrical conductivity and fast charge, the current would primarily be consumed by the side process of oxygen evolution. In case of slow charges, additional electrical conductivity due to the presence of silver oxide would not have a great effect on charge effectiveness, because under such conditions the own conductivity of hydroxide is sufficient. Additionally, the presence of silver oxide would decrease the hydroxide content, which in turn would decrease the utilization coefficient that is calculated from the total mass of the powder.


Keywords


nickel hydroxide; alkaline secondary battery; Ni(OH)2; layered double hydroxide; silver oxide

References


Battery Market Trends and Safety Aspects. Available at: https://www.celltech.se/fileadmin/user_upload/Celltech/Celltech_Sweden/Battery_Market_Trends_and_Safety_Aspects__Celltech_and_Etteplan_Seminar__20180117.pdf

Ten'kovcev, V. V., Center, B. I. (1985). Osnovy teorii i ekspluatacii germetichnyh nikel'-kadmievyh akkumulyatorov. Leningrad: Energoatomizdat, 96.

Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: 10.15587/1729-4061.2018.127764

Xiong, X., Ding, D., Chen, D., Waller, G., Bu, Y., Wang, Z., Liu, M. (2015). Three-dimensional ultrathin Ni(OH) 2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 11, 154–161. doi: 10.1016/j.nanoen.2014.10.029

Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: 10.15587/1729-4061.2017.108839

Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406

Nwanya, A. C., Offiah, S. U., Amaechi, I. C., Agbo, S., Ezugwu, S. C., Sone, B. T. et. al. (2015). Electrochromic and electrochemical supercapacitive properties of Room Temperature PVP capped Ni(OH) 2 /NiO Thin Films. Electrochimica Acta, 171, 128–141. doi: 10.1016/j.electacta.2015.05.005

Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH) 2 -Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: 10.1149/2.0071712jss

Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.

Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873

Schäfer, H.-J. (1987). Oxidation of organic compounds at the nickel hydroxide electrode. Topics in Current Chemistry, 101–129. doi: 10.1007/3-540-17871-6_13

Xing, Z., Gan, L., Wang, J., Yang, X. (2017). Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst. Journal of Materials Chemistry A, 5 (17), 7744–7748. doi: 10.1039/c7ta01907f

Gao, M., Sheng, W., Zhuang, Z., Fang, Q., Gu, S., Jiang, J., Yan, Y. (2014). Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society, 136 (19), 7077–7084. doi: 10.1021/ja502128j

Jarosz, M., Socha, R. P., Jóźwik, P., Sulka, G. D. (2017). Amperometric glucose sensor based on the Ni(OH) 2 /Al(OH) 4 − electrode obtained from a thin Ni 3 Al foil. Applied Surface Science, 408, 96–102. doi: 10.1016/j.apsusc.2017.02.188

Zhang, X., Huang, Y., Gu, A., Wang, G., Fang, B., Wu, H. (2012). Hydrogen Peroxide Sensor Based on Carbon Nanotubes/β-Ni(OH)2 Nanocomposites. Chinese Journal of Chemistry, 30 (3), 501–506. doi: 10.1002/cjoc.201280022

Tang, C., Zhao, Z. L., Chen, J., Li, B., Chen, L., Li, C. M. (2017). Se-Ni(OH) 2 -shelled vertically oriented NiSe nanowires as a superior electrocatalyst toward urea oxidation reaction of fuel cells. Electrochimica Acta, 248, 243–249. doi: 10.1016/j.electacta.2017.06.159

Ye, K., Zhang, H., Zhao, L., Huang, X., Cheng, K., Wang, G., Cao, D. (2016). Facile preparation of three-dimensional Ni(OH)2/Ni foam anode with low cost and its application in a direct urea fuel cell. New Journal of Chemistry, 40 (10), 8673–8680. doi: 10.1039/c6nj01648k

Calderón, J. A., Jiménez, J. P., Zuleta, A. A. (2016). Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH) 2 -ceramic nanoparticle composite coatings. Surface and Coatings Technology, 304, 167–178. doi: 10.1016/j.surfcoat.2016.04.063

Yang, C.-C. (2002). Synthesis and characterization of active materials of Ni(OH)2 powders. International Journal of Hydrogen Energy, 27 (10), 1071–1081. doi: 10.1016/s0360-3199(02)00013-7

Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: 10.15587/1729-4061.2017.95699

Zhao, L., Liu, Z., Jin, L. (2013). Preparation and electrochemical performance of nano-scale Ni(OH)2 doped with zinc. Transactions of Nonferrous Metals Society of China, 23 (4), 1033–1038. doi: 10.1016/s1003-6326(13)62563-7

Xing, C., Musharavati, F., Li, H., Zalezhad, E., Hui, O. K. S., Bae, S., Cho, B.-Y. (2017). Synthesis, characterization, and properties of nickel–cobalt layered double hydroxide nanostructures. RSC Advances, 7 (62), 38945–38950. doi: 10.1039/c7ra06670h

Jayashree, R. S., Vishnu Kamath, P. (2002). Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells. Journal of Power Sources, 107 (1), 120–124. doi: 10.1016/s0378-7753(01)00994-6

Li, X., Hao, X., Wang, Z., Abudula, A., Guan, G. (2017). In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting. Journal of Power Sources, 347, 193–200. doi: 10.1016/j.jpowsour.2017.02.062

Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J. et. al. (2013). An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 135 (23), 8452–8455. doi: 10.1021/ja4027715

Wang, X., Lin, Y., Su, Y., Zhang, B., Li, C., Wang, H., Wang, L. (2017). Design and synthesis of ternary-component layered double hydroxides for high-performance supercapacitors: understanding the role of trivalent metal ions. Electrochimica Acta, 225, 263–271. doi: 10.1016/j.electacta.2016.12.160

Duan, C., Zhao, J., Qin, L., Yang, L., Zhou, Y. (2017). Ternary Ni-Co-Mo oxy-hydroxide nanoflakes grown on carbon cloth for excellent supercapacitor electrodes. Materials Letters, 208, 65–68. doi: 10.1016/j.matlet.2017.05.052

Birjega, R., Vlad, A., Matei, A., Ion, V., Luculescu, C., Dinescu, M., Zavoianu, R. (2016). Growth and characterization of ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films deposited by pulsed laser deposition. Thin Solid Films, 614, 36–41. doi: 10.1016/j.tsf.2015.11.066

Motupally, S. (1995). Proton Diffusion in Nickel Hydroxide Films. Journal of The Electrochemical Society, 142 (5), 1401. doi: 10.1149/1.2048589

Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: 10.1023/a:1003537900947

Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: 10.15587/1729-4061.2018.125886

Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: 10.15587/1729-4061.2017.109770


GOST Style Citations


Battery Market Trends and Safety Aspects. URL: https://www.celltech.se/fileadmin/user_upload/Celltech/Celltech_Sweden/Battery_Market_Trends_and_Safety_Aspects__Celltech_and_Etteplan_Seminar__20180117.pdf

Ten'kovcev V. V., Center B. I. Osnovy teorii i ekspluatacii germetichnyh nikel'-kadmievyh akkumulyatorov. Leningrad: Energoatomizdat, 1985. 96 p.

Kotok V., Kovalenko V. Definition of the aging process parameters for nickel hydroxide in the alkaline medium // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 12 (92). P. 54–60. doi: 10.15587/1729-4061.2018.127764 

Three-dimensional ultrathin Ni(OH) 2 nanosheets grown on nickel foam for high-performance supercapacitors / Xiong X., Ding D., Chen D., Waller G., Bu Y., Wang Z., Liu M. // Nano Energy. 2015. Vol. 11. P. 154–161. doi: 10.1016/j.nanoen.2014.10.029 

Kotok V., Kovalenko V. The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 12 (88). P. 31–37. doi: 10.15587/1729-4061.2017.108839 

Kovalenko V., Kotok V., Bolotin O. Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 6 (83). P. 17–22. doi: 10.15587/1729-4061.2016.79406 

Electrochromic and electrochemical supercapacitive properties of Room Temperature PVP capped Ni(OH) 2 /NiO Thin Films / Nwanya A. C., Offiah S. U., Amaechi I. C., Agbo S., Ezugwu S. C., Sone B. T. et. al. // Electrochimica Acta. 2015. Vol. 171. P. 128–141. doi: 10.1016/j.electacta.2015.05.005 

Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH) 2 -Based Electrochromic Devices / Kotok V. A., Malyshev V. V., Solovov V. A., Kovalenko V. L. // ECS Journal of Solid State Science and Technology. 2017. Vol. 6, Issue 12. P. P772–P777. doi: 10.1149/2.0071712jss 

Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis / Kotok V. A., Kovalenko V. L., Kovalenko P. V., Solovov V. A., Deabate S., Mehdi A. et. al. // ARPN Journal of Engineering and Applied Sciences. 2017. Vol. 12, Issue 13. P. 3962–3977.

Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods / Solovov V., Kovalenko V., Nikolenko N., Kotok V., Vlasova E. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 6 (85). P. 16–22. doi: 10.15587/1729-4061.2017.90873 

Schäfer H.-J. Oxidation of organic compounds at the nickel hydroxide electrode // Topics in Current Chemistry. 1987. P. 101–129. doi: 10.1007/3-540-17871-6_13 

Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst / Xing Z., Gan L., Wang J., Yang X. // Journal of Materials Chemistry A. 2017. Vol. 5, Issue 17. P. 7744–7748. doi: 10.1039/c7ta01907f 

Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst / Gao M., Sheng W., Zhuang Z., Fang Q., Gu S., Jiang J., Yan Y. // Journal of the American Chemical Society. 2014. Vol. 136, Issue 19. P. 7077–7084. doi: 10.1021/ja502128j 

Amperometric glucose sensor based on the Ni(OH) 2 /Al(OH) 4 − electrode obtained from a thin Ni 3 Al foil / Jarosz M., Socha R. P., Jóźwik P., Sulka G. D. // Applied Surface Science. 2017. Vol. 408. P. 96–102. doi: 10.1016/j.apsusc.2017.02.188 

Hydrogen Peroxide Sensor Based on Carbon Nanotubes/β-Ni(OH)2 Nanocomposites / Zhang X., Huang Y., Gu A., Wang G., Fang B., Wu H. // Chinese Journal of Chemistry. 2012. Vol. 30, Issue 3. P. 501–506. doi: 10.1002/cjoc.201280022 

Se-Ni(OH) 2 -shelled vertically oriented NiSe nanowires as a superior electrocatalyst toward urea oxidation reaction of fuel cells / Tang C., Zhao Z. L., Chen J., Li B., Chen L., Li C. M. // Electrochimica Acta. 2017. Vol. 248. P. 243–249. doi: 10.1016/j.electacta.2017.06.159 

Facile preparation of three-dimensional Ni(OH)2/Ni foam anode with low cost and its application in a direct urea fuel cell / Ye K., Zhang H., Zhao L., Huang X., Cheng K., Wang G., Cao D. // New Journal of Chemistry. 2016. Vol. 40, Issue 10. P. 8673–8680. doi: 10.1039/c6nj01648k 

Calderón J. A., Jiménez J. P., Zuleta A. A. Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH) 2 -ceramic nanoparticle composite coatings // Surface and Coatings Technology. 2016. Vol. 304. P. 167–178. doi: 10.1016/j.surfcoat.2016.04.063 

Yang C.-C. Synthesis and characterization of active materials of Ni(OH)2 powders // International Journal of Hydrogen Energy. 2002. Vol. 27, Issue 10. P. 1071–1081. doi: 10.1016/s0360-3199(02)00013-7 

Kovalenko V., Kotok V. Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 6 (86). P. 11–17. doi: 10.15587/1729-4061.2017.95699 

Preparation and electrochemical performance of nano-scale Ni(OH)2 doped with zinc / Zhao L., Liu Z., Jin L. // Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, Issue 4. P. 1033–1038. doi: 10.1016/s1003-6326(13)62563-7 

Synthesis, characterization, and properties of nickel–cobalt layered double hydroxide nanostructures / Xing C., Musharavati F., Li H., Zalezhad E., Hui O. K. S., Bae S., Cho B.-Y. // RSC Advances. 2017. Vol. 7, Issue 62. P. 38945–38950. doi: 10.1039/c7ra06670h 

Jayashree R. S., Vishnu Kamath P. Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells // Journal of Power Sources. 2002. Vol. 107, Issue 1. P. 120–124. doi: 10.1016/s0378-7753(01)00994-6 

In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting / Li X., Hao X., Wang Z., Abudula A., Guan G. // Journal of Power Sources. 2017. Vol. 347. P. 193–200. doi: 10.1016/j.jpowsour.2017.02.062 

An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation / Gong M., Li Y., Wang H., Liang Y., Wu J. Z., Zhou J. et. al. // Journal of the American Chemical Society. 2013. Vol. 135, Issue 23. P. 8452–8455. doi: 10.1021/ja4027715 

Design and synthesis of ternary-component layered double hydroxides for high-performance supercapacitors: understanding the role of trivalent metal ions / Wang X., Lin Y., Su Y., Zhang B., Li C., Wang H., Wang L. // Electrochimica Acta. 2017. Vol. 225. P. 263–271. doi: 10.1016/j.electacta.2016.12.160 

Ternary Ni-Co-Mo oxy-hydroxide nanoflakes grown on carbon cloth for excellent supercapacitor electrodes / Duan C., Zhao J., Qin L., Yang L., Zhou Y. // Materials Letters. 2017. Vol. 208. P. 65–68. doi: 10.1016/j.matlet.2017.05.052 

Growth and characterization of ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films deposited by pulsed laser deposition / Birjega R., Vlad A., Matei A., Ion V., Luculescu C., Dinescu M., Zavoianu R. // Thin Solid Films. 2016. Vol. 614. P. 36–41. doi: 10.1016/j.tsf.2015.11.066 

Motupally S. Proton Diffusion in Nickel Hydroxide Films // Journal of The Electrochemical Society. 1995. Vol. 142, Issue 5. P. 1401. doi: 10.1149/1.2048589 

Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide / Liu B., Wang X. Y., Yuan H. T., Zhang Y. S., Song D. Y., Zhou Z. X. // Journal of Applied Electrochemistry. 1999. Vol. 29, Issue 7. P. 853–858. doi: 10.1023/a:1003537900947 

Kovalenko V., Kotok V. Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2 // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 6 (92). P. 16–22. doi: 10.15587/1729-4061.2018.125886 

Kotok V., Kovalenko V., Malyshev V. Comparison of oxygen evolution parameters on different types of nickel hydroxide // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 12 (89). P. 12–19. doi: 10.15587/1729-4061.2017.109770 







Copyright (c) 2018 Valerii Kotok, Vadym Kovalenko, Sergey Vlasov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061