DOI: https://doi.org/10.15587/1729-4061.2018.133797

Research of the treatment of depleted nickel­plating electrolytes by the ferritization method

Gennadii Kochetov, Tatiana Prikhna, Oleksandr Kovalchuk, Dmitry Samchenko

Abstract


Considerable attention has been paid recently to the development of comprehensive recycling of industrial wastewater, which provides for an appropriate degree of purification for both organization of circulation water supply, and subsequent disposal of waste of water treatment. The improved ferritization process, which allows decreasing original concentration of nickel ions in depleted electrolytes of nickel plating from 50–100 g/dm3 to <0.2 mg/dm3, was presented. The experimental ferrite-reactor with the use of the traditional thermal and electromagnetic pulse method of activation of ferritization process in the range of generating frequencies of up to 0.9 kHz was developed. Economic benefits of the use of the electromagnetic pulse activation compared to the high temperature one were identified. Kinetics of extraction of nickel and iron ions from aqueous solutions was explored. The impact of the basic technological parameters of ferritization at different ways of activation was experimentally determined. The most effective results of treatment of highly concentrated wastewater were achieved using the electromagnetic pulse (T=20 °C) and thermal (T=70 °C) way of activation of the ferritization process at the original ration of concentration Fe2+/Ni2+ within 3/1–4/1, total concentration of ions of heavy metals of 20–25 g/dm3, original pH of the reaction mixture of 9.5 and duration of ferritization process of 15 min. Research into phase composition and physical properties of ferritization sediments was performed. Comparative analysis of sediment volumes at different ways of compaction was carried out. Sediments are mainly characterized by the crystalline structure, ferromagnetic properties, and considerable chemical resistance. This provides for actual environmental ways of recycling, which makes it possible to avoid the loss of valuable and, at the same time, toxic metal – nickel. The proposed comprehensive process of recycling liquid industrial waste prevents pollution of the environment, ensures effective and efficient use of water, raw materials, and power in the system of galvanic production.


Keywords


wastewater treatment; ferritization; industrial production; electrolytes of nickel plating; heavy metals; waste; disposal

References


Rubanov, Yu. K., Tokach, Yu. E., Nechaev, A. F., Ognev, M. N. (2009). The galvanic productions waste waters and sludges processing with the heavy metals ions extraction. European Journal of Natural History, 6, 79–80.

Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92 (3), 407–418. doi: 10.1016/j.jenvman.2010.11.011

Lu, H.-C., Chang, J.-E., Shih, P.-H., Chiang, L.-C. (2008). Stabilization of copper sludge by high-temperature CuFe2O4 synthesis process. Journal of Hazardous Materials, 150 (3), 504–509. doi: 10.1016/j.jhazmat.2007.04.130

Petrick, L., Dubowski, Y., Klas, S., Lahav, O. (2008). Stable Incorporation of Co2+ into Ferrite Structure at Ambient Temperature: Effect of Operational Parameters. Water, Air, and Soil Pollution, 190 (1-4), 245–257. doi: 10.1007/s11270-007-9597-4

Pritosiwi, G. (2012). Removal of Metal Ions from Synthetic und Galvanic Wastewater by Their Incorporation Into Ferrites. Harburg: Die Technische Universität Hamburg-Harburg, 194.

Kochetov, G., Zorya, D., Grinenko, J. (2010). Integrated treatment of rinsing copper-containing wastewater. Civil and Environmental Engineering, 1 (4), 301–305.

Heuss-Aßbichler, S., John, M., Klapper, D., Bläß, U. W., Kochetov, G. (2016). Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization. Journal of Environmental Management, 181, 1–7. doi: 10.1016/j.jenvman.2016.05.053

Tu, Y.-J., Chang, C.-K., You, C.-F., Wang, S.-L. (2012). Treatment of complex heavy metal wastewater using a multi-staged ferrite process. Journal of Hazardous Materials, 209-210, 379–384. doi: 10.1016/j.jhazmat.2012.01.050

Yadollahpour, A., Rashidi, S., Ghotbeddin, Z., Rezaee, Z. (2014). Electromagnetic Fields for the Treatments of Wastewater: A Review of Applications and Future Opportunities. Journal of Pure and Applied Microbiology, 8 (5), 3711–3719.

Kochetov, G., Samchenko, D., Naumenko, I. (2014). Improvement of the ferritisation method for removal of nickel compounds from wastewater. Givil and Environmental Engineering, 5 (4), 143–148.

Faber, X., Thompson, B. (2016). Corrigendum to “On the field of definition of a cubic rational function and its critical points” [J. Number Theory 167 (2016) 1–6]. Journal of Number Theory, 169, 439–440. doi: 10.1016/j.jnt.2016.06.002

Kochetov, G. M., Samchenko, D. N., Potapenko, L. I. (2016). Kinetics ferritic wastewater treatment. Problems of water supply, drainage and hydraulics, 26, 118–122.

Lu, J., Liu, F., Luo, X. (2014). Selection of image features for steganalysis based on the Fisher criterion. Digital Investigation, 11 (1), 57–66. doi: 10.1016/j.diin.2013.12.001

Tokach, Y. E., Rubanov, Y. K., Pivovarova, N. A., Balyatinskaya, L. N. (2013). Galvanic Sludge Recycling with the Extraction of Valuable Components. Middle-East. Journal of Scientific Research, 18 (11), 1646–1655.

Frolov, L. A., Pivovarov, A. A., Baskevich, A. S., Kushnerev, A. I. (2014). Structure and properties of nickel ferrites produced by glow discharge in the Fe2+-Ni2+-SO 4 2− -OH− system. Russian Journal of Applied Chemistry, 87 (8), 1054–1059. doi: 10.1134/s1070427214080084

Ozmen, M., Can, K., Arslan, G., Tor, A., Cengeloglu, Y., Ersoz, M. (2010). Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination, 254 (1-3), 162–169. doi: 10.1016/j.desal.2009.11.043

Gawande, M. B., Branco, P. S., Varma, R. S. (2013). Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chemical Society Reviews, 42 (8), 3371. doi: 10.1002/chin.201326221

Gunjakar, J. L., More, A. M., Gurav, K. V., Lokhande, C. D. (2008). Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Applied Surface Science, 254 (18), 5844–5848. doi: 10.1016/j.apsusc.2008.03.065

Kryvenko, P., Hailin, C., Petropavlovskyi, O., Weng, L., Kovalchuk, O. (2016). Applicability of alkali-activated cement for immobilization of low-level radioactive waste in ion-exchange resins. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 40–45. doi: 10.15587/1729-4061.2016.59489

Krivenko, P., Kovalchuk, O., Pasko, A. (2018). Utilization of Industrial Waste Water Treatment Residues in Alkali Activated Cement and Concretes. Key Engineering Materials, 761, 35–38. doi: 10.4028/www.scientific.net/kem.761.35

Alonso, M. M., Pasko, A., Gascó, C., Suarez, J. A., Kovalchuk, O., Krivenko, P., Puertas, F. (2018). Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Construction and Building Materials, 159, 745–754. doi: 10.1016/j.conbuildmat.2017.11.119

Ntumba Malenga, E., Mulaba-Bafubiandi, A. F., Nheta, W. (2015). Alkaline leaching of nickel bearing ammonium jarosite precipitate using KOH, NaOH and NH4OH in the presence of EDTA and Na2S. Hydrometallurgy, 155, 69–78. doi: 10.1016/j.hydromet.2015.04.004

Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., Basset, J.-M. (2011). Magnetically Recoverable Nanocatalysts. Chemical Reviews, 111 (5), 3036–3075. doi: 10.1021/cr100230z


GOST Style Citations


The galvanic productions waste waters and sludges processing with the heavy metals ions extraction / Rubanov Yu. K., Tokach Yu. E., Nechaev A. F., Ognev M. N. // European Journal of Natural History. 2009. Issue 6. Р. 79–80.

Fu F., Wang Q. Removal of heavy metal ions from wastewaters: A review // Journal of Environmental Management. 2011. Vol. 92, Issue 3. P. 407–418. doi: 10.1016/j.jenvman.2010.11.011 

Stabilization of copper sludge by high-temperature CuFe2O4 synthesis process / Lu H.-C., Chang J.-E., Shih P.-H., Chiang L.-C. // Journal of Hazardous Materials. 2008. Vol. 150, Issue 3. P. 504–509. doi: 10.1016/j.jhazmat.2007.04.130 

Stable Incorporation of Co2+ into Ferrite Structure at Ambient Temperature: Effect of Operational Parameters / Petrick L., Dubowski Y., Klas S., Lahav O. // Water, Air, and Soil Pollution. 2008. Vol. 190, Issue 1-4. doi: 10.1007/s11270-007-9597-4 

Pritosiwi G. Removal of Metal Ions from Synthetic und Galvanic Wastewater by Their Incorporation Into Ferrites. Harburg: Die Technische Universität Hamburg-Harburg, 2012. 194 p.

Kochetov G., Zorya D., Grinenko J. Integrated treatment of rinsing copper-containing wastewater // Civil and Environmental Engineering. 2010. Vol. 1, Issue 4. P. 301–305.

Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization / Heuss-Aßbichler S., John M., Klapper D., Bläß U. W., Kochetov G. // Journal of Environmental Management. 2016. Vol. 181. P. 1–7. doi: 10.1016/j.jenvman.2016.05.053 

Treatment of complex heavy metal wastewater using a multi-staged ferrite process / Tu Y.-J., Chang C.-K., You C.-F., Wang S.-L. // Journal of Hazardous Materials. 2012. Vol. 209-210. P. 379–384. doi: 10.1016/j.jhazmat.2012.01.050 

Electromagnetic Fields for the Treatments of Wastewater: A Review of Applications and Future Opportunities / Yadollahpour A., Rashidi S., Ghotbeddin Z., Rezaee Z. // Journal of Pure and Applied Microbiology. 2014. Vol. 8, Issue 5. P. 3711–3719.

Kochetov G., Samchenko D., Naumenko I. Improvement of the ferritisation method for removal of nickel compounds from wastewater // Givil and Environmental Engineering. 2014. Vol. 5, Issue 4. P. 143–148.

Faber X., Thompson B. Corrigendum to “On the field of definition of a cubic rational function and its critical points” [J. Number Theory 167 (2016) 1–6] // Journal of Number Theory. 2016. Vol. 169. P. 439–440. doi: 10.1016/j.jnt.2016.06.002 

Kochetov G. M., Samchenko D. N., Potapenko L. I. Kinetics ferritic wastewater treatment // Problems of water supply, drainage and hydraulics. 2016. Issue 26. P. 118–122.

Lu J., Liu F., Luo X. Selection of image features for steganalysis based on the Fisher criterion // Digital Investigation. 2014. Vol. 11, Issue 1. P. 57–66. doi: 10.1016/j.diin.2013.12.001 

Galvanic Sludge Recycling with the Extraction of Valuable Components. Middle-East / Tokach Y. E., Rubanov Y. K., Pivovarova N. A., Balyatinskaya L. N. // Journal of Scientific Research. 2013. Vol. 18, Issue 11. P. 1646–1655.

Structure and properties of nickel ferrites produced by glow discharge in the Fe2+-Ni2+-SO 4 2− -OH− system / Frolov L. A., Pivovarov A. A., Baskevich A. S., Kushnerev A. I. // Russian Journal of Applied Chemistry. 2014. Vol. 87, Issue 8. P. 1054–1059. doi: 10.1134/s1070427214080084 

Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles / Ozmen M., Can K., Arslan G., Tor A., Cengeloglu Y., Ersoz M. // Desalination. 2010. Vol. 254, Issue 1-3. P. 162–169. doi: 10.1016/j.desal.2009.11.043 

Gawande M. B., Branco P. S., Varma R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies // Chemical Society Reviews. 2013. Vol. 42, Issue 8. P. 3371. doi: 10.1002/chin.201326221 

Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets / Gunjakar J. L., More A. M., Gurav K. V., Lokhande C. D. // Applied Surface Science. 2008. Vol. 254, Issue 18. P. 5844–5848. doi: 10.1016/j.apsusc.2008.03.065 

Applicability of alkali-activated cement for immobilization of low-level radioactive waste in ion-exchange resins / Kryvenko P., Hailin C., Petropavlovskyi O., Weng L., Kovalchuk O. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 1, Issue 6 (79). Р. 40–45. doi: 10.15587/1729-4061.2016.59489 

Krivenko P., Kovalchuk O., Pasko A. Utilization of Industrial Waste Water Treatment Residues in Alkali Activated Cement and Concretes // Key Engineering Materials. 2018. Vol. 761. P. 35–38. doi: 10.4028/www.scientific.net/kem.761.35 

Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices / Alonso M. M., Pasko A., Gascó C., Suarez J. A., Kovalchuk O., Krivenko P., Puertas F. // Construction and Building Materials. 2018. Vol. 159. P. 745–754. doi: 10.1016/j.conbuildmat.2017.11.119 

Alkaline leaching of nickel bearing ammonium jarosite precipitate using KOH, NaOH and NH4OH in the presence of EDTA and Na2S / Ntumba Malenga E., Mulaba-Bafubiandi A. F., Nheta W. // Hydrometallurgy. 2015. Vol. 155. P. 69–78. doi: 10.1016/j.hydromet.2015.04.004 

Magnetically Recoverable Nanocatalysts / Polshettiwar V., Luque R., Fihri A., Zhu H., Bouhrara M., Basset J.-M. // Chemical Reviews. Vol. 111, Issue 5. P. 3036–3075. doi: 10.1021/cr100230z 







Copyright (c) 2018 Gennadii Kochetov, Tatiana Prikhna, Oleksandr Kovalchuk, Dmitry Samchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061