Visualization of bubbles formation on the boiling process in tapering heat pipe with variation of evaporator to condenser diameter ratio

Sarip Sarip, Sudjito Soeparman, Lilis Yuliati, Moch. Agus Choiron

Abstract


In the present study, a new tapering heat pipe design had been developed to enhance the thermal performances. Boiling visualization in the tapering heat pipe is investigated to provide the detailed information of bubbles nucleation. Experiment was conducted in the tapering heat pipe with variation of the evaporator (d) to condenser (D) diameter ratio. The values of d/D are varied at 1/1; 1/2; 1/3 and 1/4. Heat load was generated at the evaporator section using heater DC-Power supply at 30, 40 and 50 Watt. The visualization technique was developed by using a transparent glass tube and the images of boiling bubbles were captured by SLR camera. The glass tube inclination is 45o and integrated with the NI-9211 and c-DAQ 9271 module. K-type thermocouple was set at the evaporator and condenser sections for measurement of boiling temperatures in the tapering heat pipe. Based on the results, it can be noted that variations of heat load and diameter ratio (d/D) of the evaporator and condenser affect the size and shape of boiling bubbles, as well as the nucleation temperature on the tapering heat pipe. The heat transfer coefficient tends to increase at a heat load of 50 W and diameter ratio d/D=1/4.


Keywords


boiling visualization; bubbles formation; tapering heat pipe; evaporator to condenser diameter ratio

Full Text:

PDF

References


Rao, R. V., More, K. C. (2015). Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm. Energy, 80, 535–544. doi: 10.1016/j.energy.2014.12.008

Liou, J.-H., Chang, C.-W., Chao, C., Wong, S.-C. (2010). Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes. International Journal of Heat and Mass Transfer, 53 (7-8), 1498–1506. doi: 10.1016/j.ijheatmasstransfer.2009.11.046

Wong, S.-C., Liou, J.-H., Chang, C.-W. (2010). Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes. International Journal of Heat and Mass Transfer, 53 (19-20), 3792–3798. doi: 10.1109/impact.2009.5382185

Wong, S.-C., Lin, Y.-C. (2011). Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization. International Journal of Heat and Mass Transfer, 54 (17-18), 3921–3926. doi: 10.1016/j.ijheatmasstransfer.2011.04.033

Wong, S.-C., Lin, Y.-C., Liou, J.-H. (2012). Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone. International Journal of Thermal Sciences, 52, 154–160. doi: 10.1016/j.ijthermalsci.2011.09.020

Weibel, J. A., Garimella, S. V. (2012). Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks. International Journal of Heat and Mass Transfer, 55 (13-14), 3498–3510. doi: 10.1016/j.ijheatmasstransfer.2012.03.021

Wong, S.-C., Cheng, H.-S., Tu, C.-W. (2017). Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability. International Journal of Heat and Mass Transfer, 114, 1045–1053. doi: 10.1016/j.ijheatmasstransfer.2017.06.107

Wong, S.-C., Tseng, H.-H., Chen, S.-H. (2014). Visualization experiments on the condensation process in heat pipe wicks. International Journal of Heat and Mass Transfer, 68, 625–632. doi: 10.1016/j.ijheatmasstransfer.2013.09.069

Wong, S.-C., Kao, Y.-H. (2008). Visualization and performance measurement of operating mesh-wicked heat pipes. International Journal of Heat and Mass Transfer, 51 (17-18), 4249–4259. doi: 10.1016/j.ijheatmasstransfer.2008.01.022

Wang, P.-Y., Chen, X.-J., Liu, Z.-H., Liu, Y.-P. (2012). Application of nanofluid in an inclined mesh wicked heat pipes. Thermochimica Acta, 539, 100–108. doi: 10.1016/j.tca.2012.04.011

Senthilkumar, R., Vaidyanathan, S., Sivaraman, B. (2012). Effect of Inclination Angle in Heat Pipe Performance Using Copper Nanofluid. Procedia Engineering, 38, 3715–3721. doi: 10.1016/j.proeng.2012.06.427


GOST Style Citations


Rao R. V., More K. C. Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm // Energy. 2015. Vol. 80. P. 535–544. doi: 10.1016/j.energy.2014.12.008 

Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes / Liou J.-H., Chang C.-W., Chao C., Wong S.-C. // International Journal of Heat and Mass Transfer. 2010. Vol. 53. P. 7-8. P. 1498–1506. doi: 10.1016/j.ijheatmasstransfer.2009.11.046 

Wong S.-C., Liou J.-H., Chang C.-W. Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes // International Journal of Heat and Mass Transfer. 2010. Vol. 53, Issue 19-20. P. 3792–3798. doi: 10.1109/impact.2009.5382185 

Wong S.-C., Lin Y.-C. Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization // International Journal of Heat and Mass Transfer. 2011. Vol. 54, Issue 17-18. P. 3921–3926. doi: 10.1016/j.ijheatmasstransfer.2011.04.033 

Wong S.-C., Lin Y.-C., Liou J.-H. Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone // International Journal of Thermal Sciences. 2012. Vol. 52. P. 154–160. doi: 10.1016/j.ijthermalsci.2011.09.020 

Weibel J. A., Garimella S. V. Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks // International Journal of Heat and Mass Transfer. 2012. Vol. 55, Issue 13-14. P. 3498–3510. doi: 10.1016/j.ijheatmasstransfer.2012.03.021 

Wong S.-C., Cheng H.-S., Tu C.-W. Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability // International Journal of Heat and Mass Transfer. 2017. Vol. 114. P. 1045–1053. doi: 10.1016/j.ijheatmasstransfer.2017.06.107 

Wong S.-C., Tseng H.-H., Chen S.-H. Visualization experiments on the condensation process in heat pipe wicks // International Journal of Heat and Mass Transfer. 2014. Vol. 68. P. 625–632. doi: 10.1016/j.ijheatmasstransfer.2013.09.069 

Wong S.-C., Kao Y.-H. Visualization and performance measurement of operating mesh-wicked heat pipes // International Journal of Heat and Mass Transfer. 2008. Vol. 51, Issue 17-18. P. 4249–4259. doi: 10.1016/j.ijheatmasstransfer.2008.01.022 

Application of nanofluid in an inclined mesh wicked heat pipes / Wang P.-Y., Chen X.-J., Liu Z.-H., Liu Y.-P. // Thermochimica Acta. 2012. Vol. 539. P. 100–108. doi: 10.1016/j.tca.2012.04.011 

Senthilkumar R., Vaidyanathan S., Sivaraman B. Effect of Inclination Angle in Heat Pipe Performance Using Copper Nanofluid // Procedia Engineering. 2012. Vol. 38. P. 3715–3721. doi: 10.1016/j.proeng.2012.06.427 



DOI: https://doi.org/10.15587/1729-4061.2018.133973

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Sarip Sarip, Sudjito Soeparman, Lilis Yuliati, Moch. Agus Choiron

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061