An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.139418

Keywords:

nanofluid, vapor bubble departure diameter, vapor bubble departure frequency, nucleation site density

Abstract

The results of the experimental study of the internal characteristics of the pool boiling process of the refrigerant R141b, solution R141b/surfactant Span-80 and nanofluid R141b/Span-80/ TiO2 nanoparticles on the surfaces of stainless steel and teflon have been presented.

The measurement of the vapor bubble departure diameter, the vapor bubble departure frequency and the nucleation site density has been performed at atmospheric pressure and in the range of heat fluxes from 3.0 to 7.5 kW·m-2.

The study showed that the vapor bubble departure diameter in nanofluid boiling on the stainless steel surface is 0.7 mm and on the teflon surface – 0.45 mm. Besides, the additives of nanoparticles to the solution of R141b/Span-80 lead to a decrease in the vapor bubble departure diameter in boiling on the teflone surfaces. The opposite effect was detected in boiling on the stainless steel surface.

It is shown that the additives of TiO2 nanoparticles to the solution R141b/Span-80 lead to a decrease in the number of nucleation sites by 2–8 times. This effect depends on the heat flux and type of heaters surface.

It was found that the rise of the heat flux leads to an increase in the difference between the magnitudes of nucleation site density for the teflon and stainless steel surfaces in boiling of R141b and R141b/Span-80.

The number of nucleation sites on the teflon surface is 2 times lower compared with boiling on the stainless steel surface at a heat flux of 7.5 kW·m-2. The type of surfaces does not affect the number of nucleation sites and vapor bubble departure frequency in nanofluid boiling in the entire investigated range of heat fluxes.

Based on the results of the study, it was found that the vapor bubble departure frequency in boiling of R141b and solution R141b/Span-80 on the teflon surface is 1.5–2 times lower compared with boiling on the stainless steel surface.

The obtained experimental data can be used in predicting the heat transfer coefficient in boiling of the solution of R141b/Span-80 and nanofluid R141b/Span-80/TiO2.

Author Biographies

Olga Khliyeva, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Аssociate Professor

Department of Thermal Physics and Applied Ecology

Tetiana Lukianova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Postgraduate student

Department of Thermal Physics and Applied Ecology

Yury Semenyuk, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Аssociate Professor

Department of Thermal Physics and Applied Ecology

Vitaly Zhelezny, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of Thermal Physics and Applied Ecology

Artem Nikulin, Instituto Superior Técnico, Center for Innovation, Technology and Policy Research, IN+ Rovisco Pais ave., 1, Lisboa, Portugal, 1049-001

PhD

References

  1. Ali, H. M., Arshad, W. (2017). Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. International Journal of Heat and Mass Transfer, 106, 465–472. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.061
  2. Arshad, W., Ali, H. M. (2017). Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. International Journal of Heat and Mass Transfer, 107, 995–1001. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.127
  3. Arshad, W., Ali, H. M. (2017). Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO 2 nanofluid. International Journal of Heat and Mass Transfer, 110, 248–256. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.032
  4. Minakov, A. V., Lobasov, A. S., Guzei, D. V., Pryazhnikov, M. I., Rudyak, V. Y. (2015). The experimental and theoretical study of laminar forced convection of nanofluids in the round channel. Applied Thermal Engineering, 88, 140–148. doi: https://doi.org/10.1016/j.applthermaleng.2014.11.041
  5. Minakov, A. V., Guzei, D. V., Pryazhnikov, M. I., Zhigarev, V. A., Rudyak, V. Y. (2016). Study of turbulent heat transfer of the nanofluids in a cylindrical channel. International Journal of Heat and Mass Transfer, 102, 745–755. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.071
  6. Ding, Y., Chen, H., Wang, L., Yang, C.-Y., He, Y., Yang, W. et. al. (2007). Heat Transfer Intensification Using Nanofluids. KONA Powder and Particle Journal, 25, 23–38. doi: https://doi.org/10.14356/kona.2007006
  7. Liu, D.-W., Yang, C.-Y. (2007). Effect of Nano-Particles on Pool Boiling Heat Transfer of Refrigerant 141b. ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels. doi: https://doi.org/10.1115/icnmm2007-30221
  8. Peng, H., Ding, G., Hu, H. (2011). Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Experimental Thermal and Fluid Science, 35 (6), 960–970. doi: https://doi.org/10.1016/j.expthermflusci.2011.01.016
  9. Ali, H. M., Generous, M. M., Ahmad, F., Irfan, M. (2017). Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO 2 -water based nanofluids. Applied Thermal Engineering, 113, 1146–1151. doi: https://doi.org/10.1016/j.applthermaleng.2016.11.127
  10. You, S. M., Kim, J. H., Kim, K. H. (2003). Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters, 83 (16), 3374–3376. doi: https://doi.org/10.1063/1.1619206
  11. Vassallo, P., Kumar, R., D’Amico, S. (2004). Pool boiling heat transfer experiments in silica–water nano-fluids. International Journal of Heat and Mass Transfer, 47 (2), 407–411. doi: https://doi.org/10.1016/s0017-9310(03)00361-2
  12. Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., You, S. M. (2010). Pool boiling characteristics of low concentration nanofluids. International Journal of Heat and Mass Transfer, 53 (5-6), 972–981. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018
  13. Das, S. K., Putra, N., Roetzel, W. (2003). Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer, 46 (5), 851–862. doi: https://doi.org/10.1016/s0017-9310(02)00348-4
  14. Das, S. K., Putra, N., Roetzel, W. (2003). Pool boiling of nano-fluids on horizontal narrow tubes. International Journal of Multiphase Flow, 29 (8), 1237–1247. doi: https://doi.org/10.1016/s0301-9322(03)00105-8
  15. Bang, I. C., Heung Chang, S. (2005). Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. International Journal of Heat and Mass Transfer, 48 (12), 2407–2419. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  16. Kim, S. J., Bang, I. C., Buongiorno, J., Hu, L. W. (2007). Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. International Journal of Heat and Mass Transfer, 50 (19-20), 4105–4116. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
  17. Liu, Z., Liao, L. (2008). Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. International Journal of Heat and Mass Transfer, 51 (9-10), 2593–2602. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.050
  18. Trisaksri, V., Wongwises, S. (2009). Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. International Journal of Heat and Mass Transfer, 52 (5-6), 1582–1588. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041
  19. Nikulin, A., Khliyeva, O., Lukianov, N., Zhelezny, V., Semenyuk, Y. (2018). Study of pool boiling process for the refrigerant R11, isopropanol and isopropanol/Al2O3 nanofluid. International Journal of Heat and Mass Transfer, 118, 746–757. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.008
  20. Rohsenow, W. M., Hartnett, J. P., Cho, Y. I. (Eds.) (1998). Handbook of heat transfer. McGraw-Hill New York, 1501.
  21. Dhir, V. K. (2006). Mechanistic Prediction of Nucleate Boiling Heat Transfer–Achievable or a Hopeless Task? Journal of Heat Transfer, 128 (1), 1. doi: https://doi.org/10.1115/1.2136366
  22. Stephan, K., Abdelsalam, M. (1980). Heat-transfer correlations for natural convection boiling. International Journal of Heat and Mass Transfer, 23 (1), 73–87. doi: https://doi.org/10.1016/0017-9310(80)90140-4
  23. Tolubinskiy, V. I. (1980). Teploobmen pri kipenii. Kyiv: Naukova dumka, 316.
  24. Mikic, B. B., Rohsenow, W. M. (1969). A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics. Journal of Heat Transfer, 91 (2), 245. doi: https://doi.org/10.1115/1.3580136
  25. Benjamin, R. J., Balakrishnan, A. R. (1996). Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes. International Journal of Heat and Mass Transfer, 39 (12), 2495–2504. doi: https://doi.org/10.1016/0017-9310(95)00320-7
  26. Gerardi, C., Buongiorno, J., Hu, L., McKrell, T. (2011). Infrared thermometry study of nanofluid pool boiling phenomena. Nanoscale Research Letters, 6 (1), 232. doi: https://doi.org/10.1186/1556-276x-6-232
  27. Hamda, M., Hamed, M. S. (2016). Bubble dynamics in pool boiling of nanofluids. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 30–33.
  28. Shoghl, S. N., Bahrami, M., Moraveji, M. K. (2014). Experimental investigation and CFD modeling of the dynamics of bubbles in nanofluid pool boiling. International Communications in Heat and Mass Transfer, 58, 12–24. doi: https://doi.org/10.1016/j.icheatmasstransfer.2014.07.027
  29. Nam, Y., Aktinol, E., Dhir, V. K., Ju, Y. S. (2011). Single bubble dynamics on a superhydrophilic surface with artificial nucleation sites. International Journal of Heat and Mass Transfer, 54 (7-8), 1572–1577. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.031
  30. Pioro, I. L., Rohsenow, W., Doerffer, S. S. (2004). Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface. International Journal of Heat and Mass Transfer, 47 (23), 5033–5044. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.019
  31. Ciloglu, D., Bolukbasi, A. (2015). A comprehensive review on pool boiling of nanofluids. Applied Thermal Engineering, 84, 45–63. doi: https://doi.org/10.1016/j.applthermaleng.2015.03.063
  32. Fang, X., Chen, Y., Zhang, H., Chen, W., Dong, A., Wang, R. (2016). Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review. Renewable and Sustainable Energy Reviews, 62, 924–940. doi: https://doi.org/10.1016/j.rser.2016.05.047
  33. Gerardi, C., Buongiorno, J., Hu, L., McKrell, T. (2010). Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. International Journal of Heat and Mass Transfer, 53 (19-20), 4185–4192. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.041
  34. Karimzadehkhouei, M., Shojaeian, M., Şendur, K., Mengüç, M. P., Koşar, A. (2017). The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling. International Journal of Heat and Mass Transfer, 109, 157–166. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.116
  35. Quan, X., Wang, D., Cheng, P. (2017). An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid. International Journal of Heat and Mass Transfer, 108, 32–40. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.098
  36. Peng, H., Ding, G., Jiang, W., Hu, H., Gao, Y. (2009). Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32 (6), 1259–1270. doi: https://doi.org/10.1016/j.ijrefrig.2009.01.025
  37. Tazarv, S., Saffar-Avval, M., Khalvati, F., Mirzaee, E., Mansoori, Z. (2015). Experimental Investigation of Saturated Flow Boiling Heat Transfer to TiO2/R141b Nanorefrigerant. Experimental Heat Transfer, 29 (2), 188–204. doi: https://doi.org/10.1080/08916152.2014.973976
  38. Eid, E. I., Khalaf-Allah, R. A., Taher, S. H., Al-Nagdy, A. A. (2017). An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A. Heat and Mass Transfer, 53 (8), 2597–2607. doi: https://doi.org/10.1007/s00231-017-2010-y
  39. Chang, T.-B., Wang, Z.-L. (2016). Experimental investigation into effects of ultrasonic vibration on pool boiling heat transfer performance of horizontal low-finned U-tube in TiO2/R141b nanofluid. Heat and Mass Transfer, 52 (11), 2381–2390. doi: https://doi.org/10.1007/s00231-015-1746-5
  40. Diao, Y. H., Li, C. Z., Zhao, Y. H., Liu, Y., Wang, S. (2015). Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure. International Journal of Heat and Mass Transfer, 89, 110–115. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.043
  41. Khliyeva, O. et. al. (2017). An experimental study of heat transfer coefficient and internal characteristics of nucleate pool boiling of nanofluid R141b/TiO2. 1st European Symposium on Nanofluids (ESNf2017), 162–165.
  42. Cheng, L., Mewes, D., Luke, A. (2007). Boiling phenomena with surfactants and polymeric additives: A state-of-the-art review. International Journal of Heat and Mass Transfer, 50 (13-14), 2744–2771. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.016
  43. Thermal environmental conditions for human occupancy (2004). American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Downloads

Published

2018-07-24

How to Cite

Khliyeva, O., Lukianova, T., Semenyuk, Y., Zhelezny, V., & Nikulin, A. (2018). An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process. Eastern-European Journal of Enterprise Technologies, 4(8 (94), 59–66. https://doi.org/10.15587/1729-4061.2018.139418

Issue

Section

Energy-saving technologies and equipment