Experimental study into energy consumption of the manure removal processes using scraper units

Authors

  • Gennadii Golub National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041, Ukraine https://orcid.org/0000-0002-2388-0405
  • Vasyl Lukach Separated subdivision of the National University of Bioresources and Nature Management of Ukraine "Nizhyn Agrotechnical Institute" Shevchenka str., 10, Nizhyn, Ukraine, 16600, Ukraine https://orcid.org/0000-0001-5715-9029
  • Mykola Ikalchyk Separated subdivision of the National University of Bioresources and Nature Management of Ukraine "Nizhyn Agrotechnical Institute" Shevchenka str., 10, Nizhyn, Ukraine, 16600, Ukraine https://orcid.org/0000-0001-7085-2952
  • Viktor Tesliuk National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041, Ukraine https://orcid.org/0000-0002-9233-6518
  • Viacheslav Chuba National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041, Ukraine https://orcid.org/0000-0002-4119-0520

DOI:

https://doi.org/10.15587/1729-4061.2018.139490

Keywords:

manure removal, schedule for turning on, scraper unit opening angle, scrapers inclination angle, scraper unit speed, energy consumption

Abstract

We have experimentally investigated the patterns in the influence of opening angle of the scraper unit, inclination angle of scrapers, and motion speed of the scraper unit, on specific energy consumption by the improved scraper unit.

We have experimentally substantiated the hourly schedule of manure accumulation and a schedule for turning the scraper unit on; it is proposed to remove manure 5 times during 24 hours: at 7, 9, 14, 18, 22, which would significantly reduce resource consumption and energy costs associated with the launch of a conveyor.

Experimental study enabled determining the structural (opening angle of the scraper unit and inclination angle of the working surfaces of scratchers) and technological (motion speed of the scraper unit) parameters, at which the improved scraper unit would demonstrate minimum specific energy consumption.

The optimal parameters for a scraper unit, at which the improved scraper unit would have minimum specific energy consumption, are the scraper unit opening angle in the range of 105 to 115°; inclination angle of the working surface of scrapers is 60°, motion speed of the scraper unit is 0.13 m/s. Based on these indicators, we assembled the developed scraper unit for manure removal.

We have conducted comparative experimental study into operation of the developed scraper unit for manure removal and the prototype, commercially available scraper unit USG-3. This study demonstrated the advantage of the developed scraper unit compared to USG-3; specific energy consumption reduces by the amount of 44 to 48 % to 0.34‒0.36 kW h/t.

The established rational parameters and operating modes of the scraper unit reduce energy consumption of the scraper unit required, while maintaining the required quality for cleaning a manure channel, which confirms the feasibility of its industrial production.

The research results reported here could be applied when designing the bulldozers and other melioration equipment.

Author Biographies

Gennadii Golub, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

Doctor of Technical Sciences, Professor, Head of Department

Department of tractors, automobiles and bioenergosistem

Vasyl Lukach, Separated subdivision of the National University of Bioresources and Nature Management of Ukraine "Nizhyn Agrotechnical Institute" Shevchenka str., 10, Nizhyn, Ukraine, 16600

PhD, Associate Professor

Department of Management and Logistics

Mykola Ikalchyk, Separated subdivision of the National University of Bioresources and Nature Management of Ukraine "Nizhyn Agrotechnical Institute" Shevchenka str., 10, Nizhyn, Ukraine, 16600

PhD

Department of operation of machines and technical service

Viktor Tesliuk, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

Doctor of Technical Sciences, Professor

Department agricultural machines and systems engineering named after acad. P. M. Vasilenko

Viacheslav Chuba, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Associate Professor

Department of tractors, automobiles and bioenergosistem

References

  1. Boiko, I. H. (Ed.) (2006). Mashyny ta obladnannia dlia tvarynnytstva. Vol. 1. Kharkiv: KhNTUSH, 225.
  2. Boltyanskaya, N. (2012). Puti razvitiya otrasli svinovodstva i povyshenie konkurentosposobnosti ee produkcii. Motrol. Commission of Motorization and Energetics in Agriculture, 14 (3), 164–175.
  3. Marcussen, D., Laursen, A. K. (2008). The basics of dairy cattle production. Århus: Landbrugsforlaget: Dansk Landbrugsrådgivning, Landscentret, 240.
  4. Brahinets, A. M. (2011). Perspektyvy rekonstruktsiyi i avtomatyzatsiyi molochnykh ferm. Pratsi Tavriyskoho derzhavnoho ahrotekhnolohichnoho universytetu, 1 (11), 112–119.
  5. Aguirre-Villegas, H. A., Larson, R. A. (2017). Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. Journal of Cleaner Production, 143, 169–179. doi: https://doi.org/10.1016/j.jclepro.2016.12.133
  6. Ivanova-Peneva, S. G., Aarnink, A. J. A., Verstegen, M. W. A. (2008). Ammonia emissions from organic housing systems with fattening pigs. Biosystems Engineering, 99 (3), 412–422. doi: https://doi.org/10.1016/j.biosystemseng.2007.11.006
  7. Philippe, F.-X., Cabaraux, J.-F., Nicks, B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agriculture, Ecosystems & Environment, 141 (3-4), 245–260. doi: https://doi.org/10.1016/j.agee.2011.03.012
  8. Snoek, D. J. W., Stigter, J. D., Blaauw, S. K., Groot Koerkamp, P. W. G., Ogink, N. W. M. (2017). Assessing fresh urine puddle physics in commercial dairy cow houses. Biosystems Engineering, 159, 133–142. doi: https://doi.org/10.1016/j.biosystemseng.2017.04.003
  9. Vaddella, V. K., Ndegwa, P. M., Joo, H. (2011). Ammonia loss from simulated post-collection storage of scraped and flushed dairy-cattle manure. Biosystems Engineering, 110 (3), 291–296. doi: https://doi.org/10.1016/j.biosystemseng.2011.09.001
  10. Buck, M., Friedli, K., Steiner, B., Gygax, L., Wechsler, B., Steiner, A. (2013). Influence of manure scrapers on dairy cows in cubicle housing systems. Livestock Science, 158 (1-3), 129–137. doi: https://doi.org/10.1016/j.livsci.2013.10.011
  11. Lowe, J. L., Stone, A. E., Akers, K. A., Clark, J. D., Bewley, J. M. (2015). Effect of alley-floor scraping frequency on Escherichia coli, Klebsiella species, environmental Streptococcus species, and coliform counts. The Professional Animal Scientist, 31 (3), 284–289. doi: https://doi.org/10.15232/pas.2015-01385
  12. A Life CycleAssessment of Dairy Manure Management (2017). UCLA, 52.
  13. Upton, J., Murphy, M., Shalloo, L., Groot Koerkamp, P. W. G., De Boer, I. J. M. (2014). A mechanistic model for electricity consumption on dairy farms: Definition, validation, and demonstration. Journal of Dairy Science, 97 (8), 4973–4984. doi: https://doi.org/10.3168/jds.2014-8015
  14. Aguirre-Villegas, H. A., Larson, R., Reinemann, D. J. (2014). From waste-to-worth: energy, emissions, and nutrient implications of manure processing pathways. Biofuels, Bioproducts and Biorefining, 8 (6), 770–793. doi: https://doi.org/10.1002/bbb.1496
  15. Pedizzi, C., Noya, I., Sarli, J., González-García, S., Lema, J. M., Moreira, M. T., Carballa, M. (2018). Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure. Waste Management, 77, 276–286. doi: https://doi.org/10.1016/j.wasman.2018.04.007
  16. Shashkov, V. B. (2005). Obrabotka eksperimental'nyh dannyh i postroenie empiricheskih formul. Kurs lekciy. Orenburg: OGU, 150.
  17. Kononyuk, A. E. (2011). Osnovy nauchnyh issledovaniy (obshchaya teoriya eksperimenta). Kyiv, 456.
  18. Granovskiy, V. A., Siraya, T. N. (1990). Metody obrabotki eksperimental'nyh dannyh pri izmereniyah. Leningrad: ENERGOATOMIZDAT, 288.
  19. Trusov, P. V. (2005). Vvedenie v matematicheskoe modelirovanie. Moscow: Logos, 440.

Downloads

Published

2018-08-15

How to Cite

Golub, G., Lukach, V., Ikalchyk, M., Tesliuk, V., & Chuba, V. (2018). Experimental study into energy consumption of the manure removal processes using scraper units. Eastern-European Journal of Enterprise Technologies, 4(1 (94), 20–26. https://doi.org/10.15587/1729-4061.2018.139490

Issue

Section

Engineering technological systems