DOI: https://doi.org/10.15587/1729-4061.2018.140862

Development of the method for structural-parametric optimization in order to improve the efficiency of transition processes in periodic systems

Iryna Semenyshyna, Yuliia Haibura, Iryna Mushenyk, Inna Sklyarenko, Vita Kononets

Abstract


In order to get the most out of the enterprise’s operational processes, the operational processes of functional systems are optimized. However, in the process of optimization, controlled systems over a significant amount of time operate under sub-optimal modes. In addition, changes in external conditions, quality parameters of raw materials, or cost estimates of the input and output products in a system operation, necessitate the repeated optimization process.

It is not uncommon that the duration of the optimization process is comparable in terms of time, or even exceeds, the system operation time. That means that it is required to optimize the transition process itself.

Currently, intensive research is conducted mainly into the development of a systematically substantiated multidisciplinary optimization criterion, and into search for methods of optimal control. Studies that investigate methods for improving the effectiveness of a transition process are carried out mainly by mathematicians, within the framework of the problem on the advanced search for an extremum. Accordingly, the well-known methods could be applied to improve the efficiency of a transition process through parametric optimization.

By using the periodic system of proportional heating of a liquid, we considered the task on improving the effectiveness of the transition process by applying the method of structural-parametric optimization. We employ, as the optimization criterion, an estimated indicator, which was tested for its use as a formula of efficiency.

The results of a comparative study into the reference technological process of a standard and a modified functional system have shown that the time required to enter the region close to optimal decreased by almost twice.

In addition, the application of the new architecture for the functional system makes it possible to improve its reliability and service efficiency.

Keywords


effectiveness of transitional processes; structural-parametric optimization; optimal control; efficient use of resources

References


Drucker, P. F. (2009). Management: Tasks, Responsibilities, Practices. Harper Collins, 864.

Barskiy, L. A., Kozin, V. Z. (1978). Sistemniy analiz v obogashchenii poleznyh iskopaemyh. Moscow: Nedra, 486.

Lee, T. H., Adams, G. E., Gaines, W. M. (1968). Computer process control: Modeling and Optimization. John Wiley & Sons, 386.

Peters, T. J., Waterman, R. H. (1982). In search of excellence (lessons from America’s best-run companies). Harper & Row, 400.

Bryson, A. E. (1996). Optimal Control – 1950 to 1985. IEEE Control Systems. 1996. Vol. 16, Issue 3. P. 26–33. doi: https://doi.org/10.1109/37.506395

Churakov, E. P. (1987). Optimal'nye i adaptivnye sistemy. Moscow: Energoatomizdat, 256.

Aleksandrovskiy, N. M. (1967). Elementy teorii optimal'nyh sistem avtomaticheskogo upravleniya. Moscowe: Energiya, 128.

Amanullah, M., Tiwari, P. (2014). Optimization of PID Parameter In Control System Tuning With Multi-Objective Genetic Algorithm. Journal of Engineering Research and Applications, 4 (5), 60–66.

Mahdi, S. A. (2014). Optimization of PID Controller Parameters based on Genetic Algorithm for non-linear Electromechanical Actuator. International Journal of Computer Applications, 94 (3), 11–20.

Hemerly, E. E. (1991). PC-based packages for identification, optimization, and adaptive control. IEEE Control Systems Magazine, 11 (2), 37–43. doi: https://doi.org/10.1109/37.67674

Jacobs, J. H., Etman, L. F. P., van Campen, E. J. J., Rooda, J. E. (2003). Characterization of Operational Time Variability Using Effective Process Times. IEEE Transactions on semiconductor manufacturing, 16 (3), 511–520. doi: https://doi.org/10.1109/TSM.2003.815215

Lutsenko, I. (2016). Definition of efficiency indicator and study of its main function as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 24–32. doi: https://doi.org/10.15587/1729-4061.2016.85453

Ghosh, A., Dehuri, S. (2004). Evolutionary Algorithms for Multi-Criterion Optimization: A Survey. International Journal of Computing & Information Sciences, 2 (1), 38–57.

Lutsenko, I. (2015). Identification of target system operations. 2. Determination of the value of the complex costs of the target operation. Eastern-European Journal of Enterprise Technologies, 1 (2 (73)), 31–36. doi: https://doi.org/10.15587/1729-4061.2015.35950

Mansour, R. M., Delbem, C. B., Alberto, F. C., Ramos, R. A. (2015). Integrating Hierarchical Clustering and Pareto-Efficiency to Preventive Controls Selection in Voltage Stability Assessment. Lecture Notes in Computer Science, 487–497. doi: http://dx.doi.org/10.1007/978-3-319-15892-1_33

Lutsenko, I., Fomovskaya, E., Koval, S., Serdiuk, O (2017). Development of the method of quasioptimal robust control for periodic operational processes. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 52–60. doi: https://doi.org/10.15587/1729-4061.2017.107542

Grad, S. (2016). Duality for Multiobjective Semidefinite Optimization Problems. Operations Research Proceedings, 189–195. doi: https://doi.org/10.1007/978-3-319-28697-6_27

Lutsenko, I., Fomovskaya, E. (2015). Synthesis of cybernetic structure of optimal spooler. Metallurgical and Mining Industry, 9, 297–301.

Biegel, J. E. (1971). Production Control: A Quantitative Approach. Hardcover, 282.

Gavrilov, D. A. (2002). Upravlenie proizvodstvom na baze standarta MRP II. Sankt-Peterburg: Piter, 320.

Bowon, K. (2017). Optimal Control Applications for Operations Strategy. Springer Nature, 223. https://doi.org/10.1007/978-981-10-3599-9

Burmistrova, O. N., Korol', S. A. (2013). Opredelenie optimal'nyh skorostey dvizheniya lesovoznyh avtopoezdov iz usloviy minimizatsii raskhoda topliva. Lesnoy vestnik. 2013. Issue 1. P. 25–28.

Gasparetto, A., Zanotto, V. (2010). Optimal trajectory planning for industrial robots. Advances in Engineering Software, 41 (4), 548–556. doi: https://doi.org/10.1016/j.advengsoft.2009.11.001

Wang, H., Tian, Y., Vasseur, C. (2015). Non-Affine Nonlinear Systems Adaptive Optimal Trajectory Tracking Controller Design and Application. Studies in Informatics and Control, 24 (1), 05–12. https://doi.org/10.24846/v24i1y201501

Gregory, J., Olivares, A. (2012). Energy-optimal trajectory planning for the Pendubot and the Acrobot. Optimal Control Applications and Methods, 34 (3), 275–295. https://doi.org/10.1002/oca.2020

Lutsenko, I. (2015). Identification of target system operations. Development of global efficiency criterion of target operations. Eastern-European Journal of Enterprise Technologies, 2 (2 (74)), 35–40. doi: https://doi.org/10.15587/1729-4061.2015.38963

Lutsenko, I., Vihrova, E., Fomovskaya, E., Serduik, O. (2016). Development of the method for testing of efficiency criterion of models of simple target operations. Eastern-European Journal of Enterprise Technologies, 2 (4 (80)), 42–50. doi: https://doi.org/10.15587/1729-4061.2016.66307

Lutsenko, I., Fomovskaya, E., Oksanych, I., Vikhrova, E., Serdiuk, О. (2017). Formal signs determination of efficiency assessment indicators for the operation with the distributed parameters. Eastern-European Journal of Enterprise Technologies, 1 (4 (85)), 24–30. doi: https://doi.org/10.15587/1729-4061.2017.91025

Lutsenko, I., Fomovskaya, E., Oksanych, I., Koval, S., Serdiu, О. (2017). Development of a verification method of estimated indicators for their use as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 17–23. doi: https://doi.org/10.15587/1729-4061.2017.95914

Lutsenko, I., Fomovskaya, E., Vihrova, E., Serdiuk, O., Fomovsky, F. (2018). Development of test operations with different duration in order to improve verification quality of effectiveness formula. Eastern-European Journal of Enterprise Technologies, 1 (4 (91)), 42–49. DOI: https://doi.org/10.15587/1729-4061.2018.121810

Argo, B., Hendrawan,Y., Riza, D., Laksono, A. (2015). Optimization of PID Controller Parameters on Flow Rate Control System Using Multiple Effect Evaporator Particle Swarm Optimization. International Journal on Advanced Science, 5 (2), 6–12. doi: https://doi.org/10.18517/ijaseit.5.2.491

Krasovskiy, A. A. (Ed.) (1987). Spravochnik po teorii avtomaticheskogo upravleniya. Moscow: Nauka, 712.

Lutsenko, I., Fomovskaya, E. (2015). Identification of target system operations. The practice of determining the optimal control. Eastern-European Journal of Enterprise Technologies, 6 (2 (78)), 30–36. doi: https://doi.org/10.15587/1729-4061.2015.54432


GOST Style Citations


Drucker P. F. Management: Tasks, Responsibilities, Practices. Harper Collins, 2009. 864 p.

Barskiy L. A., Kozin V. Z. Sistemniy analiz v obogashchenii poleznyh iskopaemyh. Moscow: Nedra, 1978. 486 p.

Lee T. H., Adams G. E., Gaines W. M. Computer process control: Modeling and Optimization. John Wiley & Sons, 1968. 386 p.

Peters T. J., Waterman R. H. In search of excellence (lessons from America’s best-run companies). Harper & Row, 1982. 400 p.

Bryson A. E. Optimal Control – 1950 to 1985. IEEE Control Systems. 1996. Vol. 16, Issue 3. P. 26–33. doi: https://doi.org/10.1109/37.506395

Churakov E. P. Optimal'nye i adaptivnye sistemy. Moscow: Energoatomizdat, 1987. 256 p.

Aleksandrovskiy N. M. Elementy teorii optimal'nyh sistem avtomaticheskogo upravleniya. Moscowe: Energiya, 1967. 128 p.

Amanullah M., Tiwari P. Optimization of PID Parameter In Control System Tuning With Multi-Objective Genetic Algorithm // Journal of Engineering Research and Applications. 2014. Vol. 4, Issue 5. P. 60–66.

Mahdi S. A. Optimization of PID Controller Parameters based on Genetic Algorithm for non-linear Electromechanical Actuator // International Journal of Computer Applications. 2014. Vol. 94, Issue 3. P. 11–20.

Hemerly E. E. PC-based packages for identification, optimization, and adaptive control // IEEE Control Systems Magazine. 1991. Vol. 11, Issue 2. P. 37–43. doi: https://doi.org/10.1109/37.67674

Characterization of Operational Time Variability Using Effective Process Times / Jacobs J. H., Etman L. F. P., van Campen E. J. J., Rooda J. E. // IEEE Transactions on semiconductor manufacturing. 2003. Vol. 16, Issue 3. P. 511–520. doi: https://doi.org/10.1109/TSM.2003.815215

Lutsenko I. Definition of efficiency indicator and study of its main function as an optimization criterion // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 6, Issue 2 (84). P. 24–32. doi: https://doi.org/10.15587/1729-4061.2016.85453

Ghosh A., Dehuri S. Evolutionary Algorithms for Multi-Criterion Optimization: A Survey // International Journal of Computing & Information Sciences. 2004. Vol. 2, Issue 1. P. 38–57.

Lutsenko I. Identification of target system operations. 2. Determination of the value of the complex costs of the target operation // Eastern-European Journal of Enterprise Technologies. 2015. Vol. 1, Issue 2 (73). P. 31–36. doi: https://doi.org/10.15587/1729-4061.2015.35950

Integrating Hierarchical Clustering and Pareto-Efficiency to Preventive Controls Selection in Voltage Stability Assessment / Mansour R. M., Delbem C. B., Alberto F. C., Ramos R. A. // Lecture Notes in Computer Science. 2015. P. 487–497. doi: http://dx.doi.org/10.1007/978-3-319-15892-1_33

Development of the method of quasioptimal robust control for periodic operational processes / Lutsenko I., Fomovskaya E., Koval S., Serdiuk O. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 2 (88). P. 52–60. doi: https://doi.org/10.15587/1729-4061.2017.107542

Grad S. Duality for Multiobjective Semidefinite Optimization Problems // Operations Research Proceedings. 2016. P. 189–195. doi: https://doi.org/10.1007/978-3-319-28697-6_27

Lutsenko I., Fomovskaya E. Synthesis of cybernetic structure of optimal spooler // Metallurgical and Mining Industry. 2015. Vol. 9. P. 297–301.

Biegel J. E. Production Control: A Quantitative Approach. Hardcover, 1971. 282 p.

Gavrilov D. A. Upravlenie proizvodstvom na baze standarta MRP II. Sankt-Peterburg: Piter, 2002. 320 p.

Bowon K. Optimal Control Applications for Operations Strategy. Springer Nature, 2017. 223 p. https://doi.org/10.1007/978-981-10-3599-9

Burmistrova O. N., Korol' S. A. Opredelenie optimal'nyh skorostey dvizheniya lesovoznyh avtopoezdov iz usloviy minimizatsii raskhoda topliva // Lesnoy vestnik. 2013. Issue 1. P. 25–28.

Gasparetto A., Zanotto V. Optimal trajectory planning for industrial robots // Advances in Engineering Software. 2010. Vol. 41, Issue 4. P. 548–556. doi: https://doi.org/10.1016/j.advengsoft.2009.11.001

Wang H., Tian Y., Vasseur C. Non-Affine Nonlinear Systems Adaptive Optimal Trajectory Tracking Controller Design and Application // Studies in Informatics and Control. 2015. Vol. 24, Issue 1. P. 05–12. https://doi.org/10.24846/v24i1y201501

Gregory J., Olivares A. Energy-optimal trajectory planning for the Pendubot and the Acrobot // Optimal Control Applications and Methods. 2012. Vol. 34, Issue 3. P. 275–295. https://doi.org/10.1002/oca.2020

Lutsenko I. Identification of target system operations. Development of global efficiency criterion of target operations // Eastern-European Journal of Enterprise Technologies. 2015. Vol. 2, Issue 2 (74). P. 35–40. doi: https://doi.org/10.15587/1729-4061.2015.38963

Development of the method for testing of efficiency criterion of models of simple target operations / Lutsenko I., Vihrova E., Fomovskaya E., Serduik O. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 2, Issue 4 (80). P. 42–50. doi: https://doi.org/10.15587/1729-4061.2016.66307

Formal signs determination of efficiency assessment indicators for the operation with the distributed parameters / Lutsenko I., Fomovskaya E., Oksanych I., Vikhrova E., Serdiuk О. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 4 (85). P. 24–30. doi: https://doi.org/10.15587/1729-4061.2017.91025

Development of a verification method of estimated indicators for their use as an optimization criterion / Lutsenko I., Fomovskaya E., Oksanych I., Koval S., Serdiuk О. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 4 (86). P. 17–23. doi: https://doi.org/10.15587/1729-4061.2017.95914

Development of test operations with different duration in order to improve verification quality of effectiveness formula / Lutsenko I., Fomovskaya E., Vihrova E., Serdiuk O., Fomovsky F. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 4 (91). P. 42–49. DOI: https://doi.org/10.15587/1729-4061.2018.121810

Optimization of PID Controller Parameters on Flow Rate Control System Using Multiple Effect Evaporator Particle Swarm Optimization / Argo B., Hendrawan Y., Riza D., Laksono A. // International Journal on Advanced Science. 2015. Vol. 5, Issue 2. P. 6–12. doi: https://doi.org/10.18517/ijaseit.5.2.491

Spravochnik po teorii avtomaticheskogo upravleniya / A. A. Krasovskiy (Ed.). Moscow: Nauka, 1987. 712 p.

Lutsenko I., Fomovskaya E. Identification of target system operations. The practice of determining the optimal control // Eastern-European Journal of Enterprise Technologies. 2015. Vol. 6, Issue 2 (78). P. 30–36. doi: https://doi.org/10.15587/1729-4061.2015.54432







Copyright (c) 2018 Iryna Semenyshyna, Yuliia Haibura, Iryna Mushenyk, Inna Sklyarenko, Vita Kononets

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061