DOI: https://doi.org/10.15587/1729-4061.2018.141007

Utilization of lime-softening sludge to obtain calcium nitrate

Olena Korchuganova, Iryna Afonina, Pavlo Prygorodov, Victoriya Mokhonko, Krystyna Kanarova

Abstract


The given research is devoted to the development of the technology of utilization of lime-softening sludge to obtain calcium nitrate.

Water treatment waste by chemical composition differs from natural raw materials such as limestone, which is traditionally used to obtain calcium nitrate. Sludge obtained at the stage of lime-softening contains about 70% calcium carbonate, a fairly large amount of iron, which enters the precipitate with solutions of coagulants, as well as organic impurities. Organic impurities come from river water and precipitate as a result of coagulation.

The process of extracting calcium by the acid solution is stable. The results are well reproduced on two kinds of waste from different enterprises. This is explained both by the high dissolution rate of calcium carbonate in nitric acid, and the similar chemical composition of the waste.

Not only calcium compounds, but also iron ones together with the organic component of liming sludge fall into the solution. A process scheme is proposed for cleaning the solution, which should include the stages of oxidation of the solution and subsequent precipitation of iron.

The concentration of iron in the experimental solutions was up to 6 g/l. With the help of the calculations of the precipitate-solution equilibrium, it has been stated that iron in the area of low concentrations of nitric acid precipitates in the solution, and calcium stays in it. The decrease of the acid concentration was carried out by the addition of pure calcium carbonate.

Kinetic studies of the process of iron precipitation on model solutions of iron (III) nitrate have been carried out. The second-order kinetic equation is obtained. The calculation of the process activation energy is available in the paper. The value of the energy is ~37 kJ/ mole, which is the evidence of the precipitation process in the transition area. The undissolved residue contains about 40% iron and can be used to obtain coagulants.

Thus, the application of the proposed method will allow the best use of water treatment waste

Keywords


water treatment; lime softening; sludge; calcium nitrate; coagulants; dissolution; nitric acid; purification; deposition

References


Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., Tchobanoglous, G. (2012). MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Inc. doi: https://doi.org/10.1002/9781118131473

Ordóñez, R., Moral, A., Hermosilla, D., Blanco, Á. (2012). Combining coagulation, softening and flocculation to dispose reverse osmosis retentates. Journal of Industrial and Engineering Chemistry, 18 (3), 926–933. doi: https://doi.org/10.1016/j.jiec.2011.08.004

Blaisi, N. I., Roessler, J., Cheng, W., Townsend, T., Al-Abed, S. R. (2015). Evaluation of the impact of lime softening waste disposal in natural environments. Waste Management, 43, 524–532. doi: https://doi.org/10.1016/j.wasman.2015.06.015

Waste disposal sites. Department of Ecology and Natural Resources of Luhansk Oblast State Administration. Available at: http://www.eco-lugansk.gov.ua/2013-12-12-00-50-06-3/2013-12-12-00-50-06-3/mvv

Petruzzelli, D. (2000). Coagulants removal and recovery from water clarifier sludge. Water Research, 34 (7), 2177–2182. doi: https://doi.org/10.1016/s0043-1354(99)00357-7

Jangkorn, S., Kuhakaew, S., Theantanoo, S., Klinla-or, H., Sriwiriyarat, T. (2011). Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants. Journal of Environmental Sciences, 23 (4), 587–594. doi: https://doi.org/10.1016/s1001-0742(10)60451-2

Zhou, Z., Yang, Y., Li, X., Gao, W., Liang, H., Li, G. (2012). Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water. Journal of Environmental Sciences, 24 (6), 1014–1020. doi: https://doi.org/10.1016/s1001-0742(11)60866-8

Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643–655. doi: https://doi.org/10.1016/j.conbuildmat.2013.05.043

Benlalla, A., Elmoussaouiti, M., Dahhou, M., Assafi, M. (2015). Utilization of water treatment plant sludge in structural ceramics bricks. Applied Clay Science, 118, 171–177. doi: https://doi.org/10.1016/j.clay.2015.09.012

Chiang, K.-Y., Chou, P.-H., Hua, C.-R., Chien, K.-L., Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171 (1-3), 76–82. doi: https://doi.org/10.1016/j.jhazmat.2009.05.144

Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I. et. al. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409–419. doi: https://doi.org/10.1016/j.jclepro.2015.09.072

Lin, K. L., Chiang, K. Y., Lin, C. Y. (2005). Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers. Cement and Concrete Research, 35 (6), 1074–1081. doi: https://doi.org/10.1016/j.cemconres.2004.11.014

Mageed, A. A., Rizk, S. A., Abu-Ali, M. H. (2011). Utilization of water treatment plants sludge ash in brick making. Journal of Engineering Sciences Assiut University, 39 (1), 195–206.

Cheng, W., Roessler, J., Blaisi, N. I., Townsend, T. G. (2014). Effect of water treatment additives on lime softening residual trace chemical composition – Implications for disposal and reuse. Journal of Environmental Management, 145, 240–248. doi: https://doi.org/10.1016/j.jenvman.2014.07.004

Hu, D., Zhou, Z., Niu, T., Wei, H., Dou, W., Jiang, L.-M., Lv, Y. (2017). Co-treatment of reject water from sludge dewatering and supernatant from sludge lime stabilization process for nutrient removal: A cost-effective approach. Separation and Purification Technology, 172, 357–365. doi: https://doi.org/10.1016/j.seppur.2016.08.032

Peter, A. (Ed.) (1996). Industrial Minerals and Their Uses: A Handbook & Formulary. William Andrew Inc., 647.

Beglov, B., Namazov, S., Dodahodzhaev, A., Yuldashev, S., Ibragimov, G. (2001). Calcium nitrate. It’s properties, production and application in agriculture. MeKchnat, Tashkent.

Calcium Nitrate Market by Application (Wastewater Treatment Chemicals, Fertilizers, Concrete Manufacturing, Explosives and Others) – Global Industry Perspective, Comprehensive Analysis, Size, Share, Growth, Segment, Trends and Forecast, 2015–2021. Available at: https://www.zionmarketresearch.com/report/calcium-nitrate-market

Rodríguez, F. J., Núñez, L. A. (2011). Characterization of aquatic humic substances. Water and Environment Journal, 25 (2), 163–170. doi: https://doi.org/10.1111/j.1747-6593.2009.00205.x

Guardia, M. de la, Garrigues, S. (Eds.) (2012). Handbook of Green Analytical Chemistry. Wiley, 566. doi: https://doi.org/10.1002/9781119940722

Harvey, D. (2000). Modern Analytical Chemistry. McGraw-Hill Companies, Boston, 816.

Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., Tchobanoglous, G. (2012). MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Inc. doi: https://doi.org/10.1002/9781118131473 Ordóñez, R., Moral, A., Hermosilla, D., Blanco, Á. (2012). Combining coagulation, softening and flocculation to dispose reverse osmosis retentates. Journal of Industrial and Engineering Chemistry, 18(3), 926–933. doi: https://doi.org/10.1016/j.jiec.2011.08.004 Blaisi, N. I., Roessler, J., Cheng, W., Townsend, T., Al-Abed, S. R. (2015). Evaluation of the impact of lime softening waste disposal in natural environments. Waste Management, 43, 524–532. doi: https://doi.org/10.1016/j.wasman.2015.06.015 Waste disposal sites. Department of Ecology and Natural Resources of Luhansk Oblast State Administration. Available at: http://www.eco-lugansk.gov.ua/2013-12-12-00-50-06-3/2013-12-12-00-50-06-3/mvvPetruzzelli, D. (2000). Coagulants removal and recovery from water clarifier sludge. Water Research, 34(7), 2177–2182. doi: https://doi.org/10.1016/s0043-1354(99)00357-7 Jangkorn, S., Kuhakaew, S., Theantanoo, S., Klinla-or, H., Sriwiriyarat, T. (2011). Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants. Journal of Environmental Sciences, 23(4), 587–594. doi: https://doi.org/10.1016/s1001-0742(10)60451-2 Zhou, Z., Yang, Y., Li, X., Gao, W., Liang, H., Li, G. (2012). Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water. Journal of Environmental Sciences, 24(6), 1014–1020. doi: https://doi.org/10.1016/s1001-0742(11)60866-8 Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643–655. doi: https://doi.org/10.1016/j.conbuildmat.2013.05.043 Benlalla, A., Elmoussaouiti, M., Dahhou, M., Assafi, M. (2015). Utilization of water treatment plant sludge in structural ceramics bricks. Applied Clay Science, 118, 171–177. doi: https://doi.org/10.1016/j.clay.2015.09.012 Chiang, K.-Y., Chou, P.-H., Hua, C.-R., Chien, K.-L., Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171(1-3), 76–82.doi: https://doi.org/10.1016/j.jhazmat.2009.05.144 Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I. et. al. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409–419.doi: https://doi.org/10.1016/j.jclepro.2015.09.072 Lin, K. L., Chiang, K. Y., Lin, C. Y. (2005). Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers. Cement and Concrete Research, 35 (6), 1074–1081. doi: https://doi.org/10.1016/j.cemconres.2004.11.014 Mageed, A.A., Rizk, S.A., Abu-Ali, M.H. (2011). Utilization of water treatment plants sludge ash in brick making. Journal of Engineering Sciences Assiut University, 39 (1), 195–206.Cheng, W., Roessler, J., Blaisi, N. I., Townsend, T. G. (2014). Effect of water treatment additives on lime softening residual trace chemical composition – Implications for disposal and reuse. Journal of Environmental Management, 145, 240–248.doi: https://doi.org/10.1016/j.jenvman.2014.07.004 Hu, D., Zhou, Z., Niu, T., Wei, H., Dou, W., Jiang, L.-M., Lv, Y. (2017). Co-treatment of reject water from sludge dewatering and supernatant from sludge lime stabilization process for nutrient removal: A cost-effective approach. Separation and Purification Technology, 172, 357–365.doi: https://doi.org/10.1016/j.seppur.2016.08.032 Peter,A. (Ed.) (1996). Industrial Minerals and Their Uses: A Handbook & Formulary. William Andrew Inc.,647. Beglov, B., Namazov, S., Dodahodzhaev,A., Yuldashev, S., Ibragimov, G.(2001). Calcium nitrate. It’s properties, production and application in agriculture. MeKchnat, Tashkent.Calcium Nitrate Market by Application (Wastewater Treatment Chemicals, Fertilizers, Concrete Manufacturing, Explosives and Others) – Global Industry Perspective, Comprehensive Analysis, Size, Share, Growth, Segment, Trends and Forecast, 2015–2021. Available at: https://www.zionmarketresearch.com/report/calcium-nitrate-marketRodríguez, F. J., Núñez, L. A. (2011). Characterization of aquatic humic substances. Water and Environment Journal, 25(2), 163–170. doi: https://doi.org/10.1111/j.1747-6593.2009.00205.x Guardia, M. de la, Garrigues, S. (Eds.) (2012).Handbook of Green Analytical Chemistry. Wiley, 566.doi: https://doi.org/10.1002/9781119940722 Harvey, D. (2000). Modern Analytical Chemistry.McGraw-Hill Companies, Boston, 816.


GOST Style Citations


MWH’s Water Treatment: Principles and Design / Crittenden J. C., Trussell R. R., Hand D. W., Howe K. J., Tchobanoglous G. John Wiley & Sons, Inc., 2012. doi: https://doi.org/10.1002/9781118131473 

Combining coagulation, softening and flocculation to dispose reverse osmosis retentates / Ordóñez R., Moral A., Hermosilla D., Blanco Á. // Journal of Industrial and Engineering Chemistry. 2012. Vol. 18, Issue 3. P. 926–933. doi: https://doi.org/10.1016/j.jiec.2011.08.004 

Evaluation of the impact of lime softening waste disposal in natural environments / Blaisi N. I., Roessler J., Cheng W., Townsend T., Al-Abed S. R. // Waste Management. 2015. Vol. 43. P. 524–532. doi: https://doi.org/10.1016/j.wasman.2015.06.015 

Waste disposal sites. Department of Ecology and Natural Resources of Luhansk Oblast State Administration. URL: http://www.eco-lugansk.gov.ua/2013-12-12-00-50-06-3/2013-12-12-00-50-06-3/mvv

Petruzzelli D. Coagulants removal and recovery from water clarifier sludge // Water Research. 2000. Vol. 34, Issue 7. P. 2177–2182. doi: https://doi.org/10.1016/s0043-1354(99)00357-7 

Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants / Jangkorn S., Kuhakaew S., Theantanoo S., Klinla-or H., Sriwiriyarat T. // Journal of Environmental Sciences. 2011. Vol. 23, Issue 4. P. 587–594. doi: https://doi.org/10.1016/s1001-0742(10)60451-2 

Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water / Zhou Z., Yang Y., Li X., Gao W., Liang H., Li G. // Journal of Environmental Sciences. 2012. Vol. 24, Issue 6. P. 1014–1020. doi: https://doi.org/10.1016/s1001-0742(11)60866-8 

Zhang L. Production of bricks from waste materials – A review // Construction and Building Materials. 2013. Vol. 47. P. 643–655. doi: https://doi.org/10.1016/j.conbuildmat.2013.05.043 

Utilization of water treatment plant sludge in structural ceramics bricks / Benlalla A., Elmoussaouiti M., Dahhou M., Assafi M. // Applied Clay Science. 2015. Vol. 118. P. 171–177. doi: https://doi.org/10.1016/j.clay.2015.09.012 

Lightweight bricks manufactured from water treatment sludge and rice husks / Chiang K.-Y., Chou P.-H., Hua C.-R., Chien K.-L., Cheeseman C. // Journal of Hazardous Materials. 2009. Vol. 171, Issue 1-3. P. 76–82. doi: https://doi.org/10.1016/j.jhazmat.2009.05.144 

Energy-efficient thermal treatment of sewage sludge for its application in blended cements / Pavlík Z., Fořt J., Záleská M., Pavlíková M., Trník A., Medved I. et. al. // Journal of Cleaner Production. 2016. Vol. 112. P. 409–419. doi: https://doi.org/10.1016/j.jclepro.2015.09.072 

Lin K. L., Chiang K. Y., Lin C. Y. Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers // Cement and Concrete Research. 2005. Vol. 35, Issue 6. P. 1074–1081. doi: https://doi.org/10.1016/j.cemconres.2004.11.014 

Mageed A. A., Rizk S. A., Abu-Ali M. H. Utilization of water treatment plants sludge ash in brick making // Journal of Engineering Sciences Assiut University. 2011. Vol. 39, Issue 1. P. 195–206.

Effect of water treatment additives on lime softening residual trace chemical composition – Implications for disposal and reuse / Cheng W., Roessler J., Blaisi N. I., Townsend T. G. // Journal of Environmental Management. 2014. Vol. 145. P. 240–248. doi: https://doi.org/10.1016/j.jenvman.2014.07.004 

Co-treatment of reject water from sludge dewatering and supernatant from sludge lime stabilization process for nutrient removal: A cost-effective approach / Hu D., Zhou Z., Niu T., Wei H., Dou W., Jiang L.-M., Lv Y. // Separation and Purification Technology. 2017. Vol. 172. P. 357–365. doi: https://doi.org/10.1016/j.seppur.2016.08.032 

Industrial Minerals and Their Uses: A Handbook & Formulary / A. Peter (Ed.). William Andrew Inc., 1996. 647 p.

Calcium nitrate. It’s properties, production and application in agriculture / Beglov B., Namazov S., Dodahodzhaev A., Yuldashev S., Ibragimov G. MeKchnat, Tashkent, 2001.

Calcium Nitrate Market by Application (Wastewater Treatment Chemicals, Fertilizers, Concrete Manufacturing, Explosives and Others) – Global Industry Perspective, Comprehensive Analysis, Size, Share, Growth, Segment, Trends and Forecast, 2015–2021. URL: https://www.zionmarketresearch.com/report/calcium-nitrate-market

Rodríguez F. J., Núñez L. A. Characterization of aquatic humic substances // Water and Environment Journal. 2011. Vol. 25, Issue 2. P. 163–170. doi: https://doi.org/10.1111/j.1747-6593.2009.00205.x 

Handbook of Green Analytical Chemistry / M. de la Guardia, S. Garrigues (Eds.). Wiley, 2012. 566 p. doi: https://doi.org/10.1002/9781119940722 

Harvey D. Modern Analytical Chemistry. 1st ed. McGraw-Hill Companies, Boston, 2000. 816 p.







Copyright (c) 2018 Olena Korchuganova, Iryna Afonina, Pavlo Prygorodov, Victoriya Mokhonko, Krystyna Kanarova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061