DOI: https://doi.org/10.15587/1729-4061.2018.141030

Establishment of fire protective effectiveness of reed treated with an impregnating solution and coatings

Yuriy Tsapko, Аleksii Tsapko

Abstract


An analysis of techniques for determining the fire protective effectiveness of reed was performed; the need to develop reliable methods for studying the process of ignition and flame propagation around the surface of the building structure, required to create new types of fireproof materials, was established. Estimation of ignition time and time of passing the surface area by the flame front revealed the unreliability of the actual values of the flammability index. The method for determining the process of ignition and propagation of flame of fire protected materials was substantiated and, taking into account the permanent conditions of heat and mass exchange in the course of testing, the setup was developed. Determining the flammability index implies the impact on sample of the heat flux of the electric radiation plane and the sample ignition by the burner. In also involves determining the thermal coefficient of the plant, measurement of the maximum temperature of combustion products and the time of its achievement, ignition time and the time of passing the surface sections by the flame front, the length of the burnt part of the sample and calculation of flammability index.

The conducted research into the process of ignition and flame propagation along the reed surface using a given technique showed that the raw sample under thermal influence ignited at second 52, the flame propagated across the whole sample over 100 s. The fire protected sample, treated with the impregnating solution based on the mixture of inorganic and organic substances, specifically the mixture of urea and phosphoric acids and natural polymer in the amount of 47.1 g/m2, ignited at second 595, flame propagation along the surface occurred only at the first section, the maximum temperature of flue gases was 114 °C, flammability index decreased to 0.42.

The results of determining the flammability index showed that under the influence of high temperature flow on the coating in the amount of 46.2 g/м2, ignition and flame propagation did not occur, flammability index was 0. Due to intense swelling, there occurred a slight increase in temperature in the vent pipe. A decrease in the flame retardant in the composition by two times at the same consumption resulted in an increase in flammability index for the roofing impregnating solution up to 5.8, and for the swelling coating up to 0.96, respectively. The above results make it possible to establish the ratio of flame retardants and polymers in these compositions and their required quantity

Keywords


fire protection of reed; impregnating solutions; coatings; surface treatment; time of ignition; flame propagation

References


Tsapko, Y., Tsapko, А. (2017). Establishment of the mechanism and fireproof efficiency of wood treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.102393

Tsapko, Y., Tsapko, А. (2018). Modeling a thermal conductivity process under the action of flame on the wall of fire­retardant reed. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 50–56. doi: https://doi.org/10.15587/1729-4061.2018.128316

Tsapko, Y., Guzii, S., Remenets, M., Kravchenko, A., Tsapko, O. (2016). Evaluation of effectiveness of wood fire protection upon exposure to flame of magnesium. Eastern-European Journal of Enterprise Technologies, 4 (10 (82)), 31–36. doi: https://doi.org/10.15587/1729-4061.2016.73543

Tsapko, J., Tsapko, А. (2017). Simulation of the phase transformation front advancement during the swelling of fire retardant coatings. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.73542

Kryvenko, P., Tsapko, Y., Guzii, S., Kravchenko, A. (2016). Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions. Eastern-European Journal of Enterprise Technologies, 5 (10 (83)), 26–31. doi: https://doi.org/10.15587/1729-4061.2016.79869

Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G., Berglund, L. (2015). Oriented Clay Nanopaper from Biobased Components – Mechanisms for Superior Fire Protection Properties. ACS Applied Materials & Interfaces, 7 (10), 5847–5856. doi: https://doi.org/10.1021/am509058h

Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: https://doi.org/10.1002/bate.201600032

Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3). doi: https://doi.org/10.15376/biores.9.3.4924-4933

Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572

Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011

Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598

Gillani, Q. F., Ahmad, F., Mutalib, M. I. A., Melor, P. S., Ullah, S., Arogundade, A. (2016). Effect of Dolomite Clay on Thermal Performance and Char Morphology of Expandable Graphite Based Intumescent Fire Retardant Coatings. Procedia Engineering, 148, 146–150. doi: https://doi.org/10.1016/j.proeng.2016.06.505

Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089

Khalili, P., Tshai, K. Y., Hui, D., Kong, I. (2017). Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Composites Part B: Engineering, 114, 101–110. doi: https://doi.org/10.1016/j.compositesb.2017.01.049

Subasinghe, A., Das, R., Bhattacharyya, D. (2016). Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites. International Journal of Smart and Nano Materials, 7 (3), 202–220. doi: https://doi.org/10.1080/19475411.2016.1239315

Romanenkov, I. G., Levites, F. A. (1991). Ognezashchita stroitel'nyh konstrukciy. Moscow: Stroyizdat, 320.

Shnal', T. (2006). Ognestoykost' derevyannyh konstrukciy. Lviv: Izd-vo “L'vovskaya politekhnika”, 220.


GOST Style Citations


Tsapko Y., Tsapko А. Establishment of the mechanism and fireproof efficiency of wood treated with an impregnating solution and coatings // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 10 (87). P. 50–55. doi: https://doi.org/10.15587/1729-4061.2017.102393 

Tsapko Y., Tsapko А. Modeling a thermal conductivity process under the action of flame on the wall of fire­retardant reed // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 10 (92). P. 50–56. doi: https://doi.org/10.15587/1729-4061.2018.128316 

Evaluation of effectiveness of wood fire protection upon exposure to flame of magnesium / Tsapko Y., Guzii S., Remenets M., Kravchenko A., Tsapko O. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 4, Issue 10 (82). P. 31–36. doi: https://doi.org/10.15587/1729-4061.2016.73543 

Tsapko J., Tsapko А. Simulation of the phase transformation front advancement during the swelling of fire retardant coatings // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 11 (86). P. 50–55. doi: https://doi.org/10.15587/1729-4061.2017.73542 

Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions / Kryvenko P., Tsapko Y., Guzii S., Kravchenko A. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 10 (83). P. 26–31. doi: https://doi.org/10.15587/1729-4061.2016.79869 

Oriented Clay Nanopaper from Biobased Components – Mechanisms for Superior Fire Protection Properties / Carosio F., Kochumalayil J., Cuttica F., Camino G., Berglund L. // ACS Applied Materials & Interfaces. 2015. Vol. 7, Issue 10. P. 5847–5856. doi: https://doi.org/10.1021/am509058h 

Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen / Krüger S., Gluth G. J. G., Watolla M.-B., Morys M., Häßler D., Schartel B. // Bautechnik. 2016. Vol. 93, Issue 8. P. 531–542. doi: https://doi.org/10.1002/bate.201600032 

Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber / Xiao N., Zheng X., Song S., Pu J. // BioResources. 2014. Vol. 9, Issue 3. doi: https://doi.org/10.15376/biores.9.3.4924-4933 

Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action / Nine M. J., Tran D. N. H., Tung T. T., Kabiri S., Losic D. // ACS Applied Materials & Interfaces. 2017. Vol. 9, Issue 11. P. 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572 

Assessment of the thermal conductivity of intumescent coatings in fire / Cirpici B. K., Wang Y. C., Rogers B. // Fire Safety Journal. 2016. Vol. 81. P. 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011 

Carosio F., Alongi J. Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds // ACS Applied Materials & Interfaces. 2016. Vol. 8, Issue 10. P. 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598 

Effect of Dolomite Clay on Thermal Performance and Char Morphology of Expandable Graphite Based Intumescent Fire Retardant Coatings / Gillani Q. F., Ahmad F., Mutalib M. I. A., Melor P. S., Ullah S., Arogundade A. // Procedia Engineering. 2016. Vol. 148. P. 146–150. doi: https://doi.org/10.1016/j.proeng.2016.06.505 

An investigation into waterborne intumescent coating with different fillers for steel application / Md Nasir K., Ramli Sulong N. H., Johan M. R., Afifi A. M. // Pigment & Resin Technology. 2018. Vol. 47, Issue 2. P. 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089 

Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite / Khalili P., Tshai K. Y., Hui D., Kong I. // Composites Part B: Engineering. 2017. Vol. 114. P. 101–110. doi: https://doi.org/10.1016/j.compositesb.2017.01.049 

Subasinghe A., Das R., Bhattacharyya D. Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites // International Journal of Smart and Nano Materials. 2016. Vol. 7, Issue 3. P. 202–220. doi: https://doi.org/10.1080/19475411.2016.1239315 

Romanenkov I. G., Levites F. A. Ognezashchita stroitel'nyh konstrukciy. Moscow: Stroyizdat, 1991. 320 p.

Shnal' T. Ognestoykost' derevyannyh konstrukciy. Lviv: Izd-vo “L'vovskaya politekhnika”, 2006. 220 p.







Copyright (c) 2018 Yuriy Tsapko, Аleksii Tsapko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061