Establishment of fire protective effectiveness of reed treated with an impregnating solution and coatings
DOI:
https://doi.org/10.15587/1729-4061.2018.141030Keywords:
fire protection of reed, impregnating solutions, coatings, surface treatment, time of ignition, flame propagationAbstract
An analysis of techniques for determining the fire protective effectiveness of reed was performed; the need to develop reliable methods for studying the process of ignition and flame propagation around the surface of the building structure, required to create new types of fireproof materials, was established. Estimation of ignition time and time of passing the surface area by the flame front revealed the unreliability of the actual values of the flammability index. The method for determining the process of ignition and propagation of flame of fire protected materials was substantiated and, taking into account the permanent conditions of heat and mass exchange in the course of testing, the setup was developed. Determining the flammability index implies the impact on sample of the heat flux of the electric radiation plane and the sample ignition by the burner. In also involves determining the thermal coefficient of the plant, measurement of the maximum temperature of combustion products and the time of its achievement, ignition time and the time of passing the surface sections by the flame front, the length of the burnt part of the sample and calculation of flammability index.
The conducted research into the process of ignition and flame propagation along the reed surface using a given technique showed that the raw sample under thermal influence ignited at second 52, the flame propagated across the whole sample over 100 s. The fire protected sample, treated with the impregnating solution based on the mixture of inorganic and organic substances, specifically the mixture of urea and phosphoric acids and natural polymer in the amount of 47.1 g/m2, ignited at second 595, flame propagation along the surface occurred only at the first section, the maximum temperature of flue gases was 114 °C, flammability index decreased to 0.42.
The results of determining the flammability index showed that under the influence of high temperature flow on the coating in the amount of 46.2 g/м2, ignition and flame propagation did not occur, flammability index was 0. Due to intense swelling, there occurred a slight increase in temperature in the vent pipe. A decrease in the flame retardant in the composition by two times at the same consumption resulted in an increase in flammability index for the roofing impregnating solution up to 5.8, and for the swelling coating up to 0.96, respectively. The above results make it possible to establish the ratio of flame retardants and polymers in these compositions and their required quantityReferences
- Tsapko, Y., Tsapko, А. (2017). Establishment of the mechanism and fireproof efficiency of wood treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.102393
- Tsapko, Y., Tsapko, А. (2018). Modeling a thermal conductivity process under the action of flame on the wall of fireretardant reed. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 50–56. doi: https://doi.org/10.15587/1729-4061.2018.128316
- Tsapko, Y., Guzii, S., Remenets, M., Kravchenko, A., Tsapko, O. (2016). Evaluation of effectiveness of wood fire protection upon exposure to flame of magnesium. Eastern-European Journal of Enterprise Technologies, 4 (10 (82)), 31–36. doi: https://doi.org/10.15587/1729-4061.2016.73543
- Tsapko, J., Tsapko, А. (2017). Simulation of the phase transformation front advancement during the swelling of fire retardant coatings. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.73542
- Kryvenko, P., Tsapko, Y., Guzii, S., Kravchenko, A. (2016). Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions. Eastern-European Journal of Enterprise Technologies, 5 (10 (83)), 26–31. doi: https://doi.org/10.15587/1729-4061.2016.79869
- Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G., Berglund, L. (2015). Oriented Clay Nanopaper from Biobased Components – Mechanisms for Superior Fire Protection Properties. ACS Applied Materials & Interfaces, 7 (10), 5847–5856. doi: https://doi.org/10.1021/am509058h
- Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: https://doi.org/10.1002/bate.201600032
- Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3). doi: https://doi.org/10.15376/biores.9.3.4924-4933
- Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572
- Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011
- Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598
- Gillani, Q. F., Ahmad, F., Mutalib, M. I. A., Melor, P. S., Ullah, S., Arogundade, A. (2016). Effect of Dolomite Clay on Thermal Performance and Char Morphology of Expandable Graphite Based Intumescent Fire Retardant Coatings. Procedia Engineering, 148, 146–150. doi: https://doi.org/10.1016/j.proeng.2016.06.505
- Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
- Khalili, P., Tshai, K. Y., Hui, D., Kong, I. (2017). Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Composites Part B: Engineering, 114, 101–110. doi: https://doi.org/10.1016/j.compositesb.2017.01.049
- Subasinghe, A., Das, R., Bhattacharyya, D. (2016). Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites. International Journal of Smart and Nano Materials, 7 (3), 202–220. doi: https://doi.org/10.1080/19475411.2016.1239315
- Romanenkov, I. G., Levites, F. A. (1991). Ognezashchita stroitel'nyh konstrukciy. Moscow: Stroyizdat, 320.
- Shnal', T. (2006). Ognestoykost' derevyannyh konstrukciy. Lviv: Izd-vo “L'vovskaya politekhnika”, 220.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Yuriy Tsapko, Аleksii Tsapko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.