Development of artificial neural network for determining the components of errors when measuring angles using a goniometric software-hardware complex

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.141290

Keywords:

artificial neural network, random error component, systematic error component, goniometer

Abstract

We have developed an artificial neural network to determine the components of error in measuring the angles by automated goniometric systems whose change over time is a non-stationary random process. There are known techniques for processing measurement results and normalizing the systematic and random components of measurement errors, they have been applied for many years, they are well justified, maximally formalized, fundamentally different and are governed by respective regulations. However, it is still a rather difficult and labor-intensive procedure to determine exactly which component of an error is present in the measurement results. A given procedure is based on using the Fisher’s dispersion criterion. In order to automate this procedure and improve performance efficiency of performed operations, we have developed an artificial neural network (ANN) and examined its functioning. It was determined that the proposed ANN could be successfully employed instead of known analytical-computational procedure using the Fisher’s dispersion criterion. The application of ANN could significantly reduce labor intensity and improve the efficiency of determining the systematic and random components of measurement errors. This is predetermined by the capability of ANN to perform parallel processing of measurement data in real time. The practical implementation of ANN is based on using the neuro-simulator Neural Analyzer, analytical software Deductor Professional developed by BaseGroupLabs. We trained ANN and tested its functionality on the set of simulation results and actual multiple observations when measuring the plane angle of a 24-facet prism. The ability of ANN to quickly and correctly determine components of measurement errors at the stage of analysis of measurement information makes it possible to subsequently define methods for its further processing in accordance with regulatory requirements. That would improve the accuracy and reliability of measurement results as it could help avoid incorrect and inaccurate calculations when normalizing measurement errors.

Author Biographies

Irina Cherepanska, Zhytomyr State Technological University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD, Associate profrssor

Department of Automation and Computer-Integrated Technologies named after Prof. B. B. Samotokin

Olena Bezvesilna, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

Doctor of Technical Sciences, Professor

Department of Instrumentation

Artem Sazonov, Zhytomyr State Technological University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD

Department of Automation and Computer-Integrated Technologies named after Prof. B. B. Samotokin

Sergii Nechai, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

PhD, Associate Professor

Department of Instrumentation

Oleksandr Pidtychenko, Zhytomyr State Technological University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD

Department of Automation and Computer-Integrated Technologies named after Prof. B. B. Samotokin

References

  1. Cherepanska, I., Bezvesilna, E., Sazonov, A., Lavrischev, A. (2015). Automated technological complex to precise angles measurement based on goniometer. Technological Complexes, 1/2 (12), 38–45.
  2. Barinova, E. A., Ivashchenko, E. M., Pavlov, P. A. (2010). Rezul'taty issledovaniya pogreshnosti goniometricheskoy sistemy. Izvestiya SPbGETU «LETI», 5, 98–103.
  3. Shevchuk, V. P., Kaplya, V. I., Zheltonogov, A. P., Lyasin, D. N. (2005). Metrologiya intellektual'nyh izmeritel'nyh sistem. Volgograd, 210.
  4. DSTU 8.009:2008. Derzhavna systema zabezpechennia yednosti vymiriuvan. Normovani metrolohichni kharakterystyky zasobiv vymiriuvan (2008). Kyiv, 20.
  5. DSTU-N RMH 63:2013. Derzhavna systema zabezpechennia vymiriuvan. Zabezpechennia efektyvnosti vymiriuvan pry upravlinni tekhnolohichnymy protsesamy (2013). Kyiv, 18.
  6. Cherepanska, I., Bezvesilna, O., Sazonov, A., Nechai, S., Khylchenko, T. (2017). The procedure for determining the number of measurements in the normalization of random error of an information­measuring system with elements of artificial intelligence. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 58–67. doi: https://doi.org/10.15587/1729-4061.2017.109957
  7. Farrance, I., Frenkel, R. (2012). Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships. Clin. Biochem. Rev., 33 (2), 49–75.
  8. Bennett, C. L., Odom, C., Ben-Asher, M. (2013). Knee Angle Estimation based on IMU data and Artificial Neural Networks. 2013 29th Southern Biomedical Engineering Conference. doi: https://doi.org/10.1109/sbec.2013.64
  9. Cherepanska, I., Bezvesilna, E., Sazonov, A. (2016). Artificial Neural Network as a Basic Element of the Automated Goniometric System. Advances in Intelligent Systems and Computing, 43–51. doi: https://doi.org/10.1007/978-3-319-48923-0_6
  10. Shrirao, N. A., Reddy, N. P., Kosuri, D. R. (2009). Neural network committees for finger joint angle estimation from surface EMG signals. BioMedical Engineering OnLine, 8 (1), 2. doi: https://doi.org/10.1186/1475-925x-8-2
  11. Angel, A. D., Glavic, M., Wehenkel, L. Using Artificial Neural Networks to Estimate Rotor Angles and Speeds from Phasor Measurements. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.7413&rep=rep1&type=pdf
  12. Zhang, J., Li, H., Lv, L., Zhang, Y. (2017). Computer-Aided Cobb Measurement Based on Automatic Detection of Vertebral Slopes Using Deep Neural Network. International Journal of Biomedical Imaging, 2017, 1–6. doi: https://doi.org/10.1155/2017/9083916
  13. Di Noia, A., Hasekamp, O. P., van Harten, G., Rietjens, J. H. H., Smit, J. M., Snik, F. Et. al. (2015). Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations. Atmospheric Measurement Techniques, 8 (1), 281–299. doi: https://doi.org/10.5194/amt-8-281-2015
  14. Otağ, I., Akkoyun, S., Taştemur, Y., Çimen, M. (2015). Boehler’s Angle Estimations in Calcaneus Bone by Using Artificial Neural Networks. Cumhuriyet Science Journal, 36 (5), 57.doi: https://doi.org/10.17776/csj.56855
  15. Manivannan, N., Neil, M. A. A. (2011). Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system. Optical Pattern Recognition XXII. doi: https://doi.org/10.1117/12.883653
  16. Li, Y., Fu, P., Li, Z., Li, X., Lin, Z. (2015). Biaxial Angle Sensor Calibration Method Based on Artificial Neural Network. Chemical Engineering Transactions, 46, 361–366. doi: http://doi.org/10.3303/CET1546061
  17. Kas'yanik, V. V., Dunec, A. P., Dunec, I. P., Shut', V. N. Primenenie neyrosetevogo podhoda dlya ocenki pogreshnosti odometrov mobil'nogo robota. Available at: http://robotics.bstu.by/mwiki/images/8/8d/Neuroinformatika_2012.pdf
  18. Golygin, N. H., Hinoeva, O. B., Yambaev, H. K. (2005). Vozmozhnosti povysheniya tochnosti geodezicheskih izmereniy na osnove iskusstvennyh neyrosetey. Izv. VUZov. Geodeziya i aerofotos'emka, 5, 17–27.
  19. Skvorcov, M. G., Zryumov, E. A., Pronin, S. P. (2011). Neyrosetevoy izmeritel'nyy preobrazovatel'. Izvestiya VolgGTU, 6 (5), 88–90.
  20. Zryumov, P. A. (2009). Issledovanie pogreshnosti opticheskogo metoda kontrolya chastoty vibracii ob'ekta, osnovannogo na primenenii geneticheskogo algoritma. Polzunovskiy al'manah, 2, 123–125.
  21. Herbert, L. T., Hansen, Z. N. L. (2016). Restructuring of workflows to minimise errors via stochastic model checking: An automated evolutionary approach. Reliability Engineering & System Safety, 145, 351–365. doi: https://doi.org/10.1016/j.ress.2015.07.002
  22. Vaysenzee, K., Pol'te, G. A., Lins, G. (2011). Avtomatizirovannoe opredelenie pogreshnosti geometricheskih izmereniy. Izvestiya vysshih uchebnyh zavedeniy. Priborostroenie, 54 (12), 47–49.
  23. Cherepanska, I. Yu. Kyrylovych, V. A., Bezvesilna, O. M., Sazonov, A. Yu. (2016). Teoriya i pryntsypy pobudovy avtomatyzovanoi systemy dlia liniynykh i kutovykh peremishchen obiektiv vyrobnytstva z vykorystanniam matematychnoho aparatu kvaternioniv i elementiv shtuchnoho intelektu. Zhytomyr: ZhDTU, 326.
  24. Cherepanska, I. Yu., Bezvesilna, O. M., Sazonov, A. Yu. (2017). Pat. No. 124155 UA. Sposib vymiriuvannia kutiv. No. 201709792; declareted: 09.10.2017; published: 26.03.2018, Bul. No. 6.
  25. Rojas, R. (1996). Neural Networks. A Systematic Introduction. Springer-Verlag Berlin Heidelberg, 502.
  26. D'yakonov, V. P., Kruglov, V. V. (2006). Matlab 6.5 SP1/7/7 SP1/7 SP2 + Simulink 5/6. Instrumenty iskusstvennogo intellekta i bioinformatiki. Moscow: SOLON-PRESS, 456.

Downloads

Published

2018-09-12

How to Cite

Cherepanska, I., Bezvesilna, O., Sazonov, A., Nechai, S., & Pidtychenko, O. (2018). Development of artificial neural network for determining the components of errors when measuring angles using a goniometric software-hardware complex. Eastern-European Journal of Enterprise Technologies, 5(9 (95), 43–51. https://doi.org/10.15587/1729-4061.2018.141290

Issue

Section

Information and controlling system