DOI: https://doi.org/10.15587/1729-4061.2018.141812

Effect of evaporator-condenser diameter ratio (d/D) on thermal performance of the tapering heat pipe with various heat sources

Sarip Sarip, Sudjito Soeparman, Lilis Yuliati, Moch. Agus Choiron

Abstract


In the present study, a new tapering heat pipe design had been developed to enhance the thermal performances. Boiling visualization in the tapering heat pipe is investigated to provide the detailed information of bubbles nucleation. Experiment was conducted in the tapering heat pipe with variation of the evaporator (d) to condenser (D) diameter ratio. The values of d/D are varied at 1/1; 1/2; 1/3 and 1/4. Heat load was generated at the evaporator section using heater DC-Power supply at 30, 40 and 50 Watt. The visualization technique was developed by using a transparent glass tube and the images of boiling bubbles were captured by SLR camera. The glass tube inclination is 45° and integrated with the NI-9211 and c-DAQ 9271 module. K-type thermocouple was set at the evaporator and condenser sections for measurement of boiling temperatures in the tapering heat pipe. Based on the results, it can be noted that variations of heat load and diameter ratio (d/D) of the evaporator and condenser affect the size and shape of boiling bubbles, as well as the nucleation temperature on the tapering heat pipe. The heat transfer coefficient tends to increase at a heat load of 50 W and diameter ratio d/D=1/4.


Keywords


boiling visualization; bubbles formation; tapering heat pipe; evaporator to condenser diameter ratio

Full Text:

PDF

References


Brautsch, A., Kew, P. A. (2002). Examination and visualisation of heat transfer processes during evaporation in capillary porous structures. Applied Thermal Engineering, 22 (7), 815–824. doi: https://doi.org/10.1016/s1359-4311(02)00027-3

Li, C., Peterson, G. P., Wang, Y. (2006). Evaporation/Boiling in Thin Capillary Wicks (l) – Wick Thickness Effects. Journal of Heat Transfer, 128 (12), 1312. doi: https://doi.org/10.1115/1.2349507

Faghri, A. (1995). Heat pipe science and technology. Global Digital Press, 874.

Zhang, H., Zhuang, J. (2003). Research, development and industrial application of heat pipe technology in China. Applied Thermal Engineering, 23 (9), 1067–1083. doi: https://doi.org/10.1016/s1359-4311(03)00037-1

Liang, T. S., Hung, Y. M. (2010). Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes. Energy Conversion and Management, 51 (11), 2109–2116. doi: https://doi.org/10.1016/j.enconman.2010.03.003

Vasiliev, L. L. (2005). Heat pipes in modern heat exchangers. Applied Thermal Engineering, 25 (1), 1–19. doi: https://doi.org/10.1016/j.applthermaleng.2003.12.004

Vasiliev, L. L. (2008). Micro and miniature heat pipes – Electronic component coolers. Applied Thermal Engineering, 28 (4), 266–273. doi: https://doi.org/10.1016/j.applthermaleng.2006.02.023

Putra, N., Septiadi, W. N., Rahman, H., Irwansyah, R. (2012). Thermal performance of screen mesh wick heat pipes with nanofluids. Experimental Thermal and Fluid Science, 40, 10–17. doi: https://doi.org/10.1016/j.expthermflusci.2012.01.007

Reay, D., McGlen, R., Kew, P. (2006). Heat Pipe Theory Design and Applications. 5th ed. Elsevier, 384.

Solomon, A. B., Ramachandran, K., Pillai, B. C. (2012). Thermal performance of a heat pipe with nanoparticles coated wick. Applied Thermal Engineering, 36, 106–112. doi: https://doi.org/10.1016/j.applthermaleng.2011.12.004

Russel, M. K., Young, C., Cotton, J. S., Ching, C. Y. (2011). The effect of orientation on U-shaped grooved and sintered wick heat pipes. Applied Thermal Engineering, 31 (1), 69–76. doi: https://doi.org/10.1016/j.applthermaleng.2010.08.013

Senthilkumar, R., Vaidyanathan, S., Sivaraman, B. (2012). Effect of Inclination Angle in Heat Pipe Performance Using Copper Nanofluid. Procedia Engineering, 38, 3715–3721. doi: https://doi.org/10.1016/j.proeng.2012.06.427

Kim, S. J., Ki Seo, J., Hyung Do, K. (2003). Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. International Journal of Heat and Mass Transfer, 46 (11), 2051–2063. doi: https://doi.org/10.1016/s0017-9310(02)00504-5

Moon, S. H., Hwang, G., Yun, H. G., Choy, T. G., Kang, Y. I. (2002). Improving thermal performance of miniature heat pipe for notebook PC cooling. Microelectronics Reliability, 42 (1), 135–140. doi: https://doi.org/10.1016/s0026-2714(01)00226-8

Sarip, Soeparman, S., Yuliati, L., Agus Choiron, M. (2018). Visualization of Bubbles Formation on the Boiling Process in Tapering Heat Pipe With Variation Of Evaporator To Condenser Diameter Ratio. Eastern-European Journal of Enterprise Technologies, 3 (8 (93)), 35–40. https://doi.org/10.15587/1729-4061.2018.133973

Peyghambarzadeh, S. M., Shahpouri, S., Aslanzadeh, N., Rahimnejad, M. (2013). Thermal performance of different working fluids in a dual diameter circular heat pipe. Ain Shams Engineering Journal, 4 (4), 855–861. doi: https://doi.org/10.1016/j.asej.2013.03.001

Thuchayapong, N., Nakano, A., Sakulchangsatjatai, P., Terdtoon, P. (2012). Effect of capillary pressure on performance of a heat pipe: Numerical approach with FEM. Applied Thermal Engineering, 32, 93–99. doi: https://doi.org/10.1016/j.applthermaleng.2011.08.034

Pastukhov, V. G., Maidanik, Y. F., Vershinin, C. V., Korukov, M. A. (2003). Miniature loop heat pipes for electronics cooling. Applied Thermal Engineering, 23 (9), 1125–1135. doi: https://doi.org/10.1016/s1359-4311(03)00046-2

Chen, Y., Groll, M., Mertz, R., Maydanik, Y. F., Vershinin, S. V. (2006). Steady-state and transient performance of a miniature loop heat pipe. International Journal of Thermal Sciences, 45 (11), 1084–1090. doi: https://doi.org/10.1016/j.ijthermalsci.2006.02.003


GOST Style Citations


Brautsch A., Kew P. A. Examination and visualisation of heat transfer processes during evaporation in capillary porous structures // Applied Thermal Engineering. 2002. Vol. 22, Issue 7. P. 815–824. doi: https://doi.org/10.1016/s1359-4311(02)00027-3 

Li C., Peterson G. P., Wang Y. Evaporation/Boiling in Thin Capillary Wicks (l) – Wick Thickness Effects // Journal of Heat Transfer. 2006. Vol. 128, Issue 12. P. 1312. doi: https://doi.org/10.1115/1.2349507 

Faghri A. Heat pipe science and technology. Global Digital Press, 1995. 874 p.

Zhang H., Zhuang J. Research, development and industrial application of heat pipe technology in China // Applied Thermal Engineering. 2003. Vol. 23, Issue 9. P. 1067–1083. doi: https://doi.org/10.1016/s1359-4311(03)00037-1 

Liang T. S., Hung Y. M. Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes // Energy Conversion and Management. 2010. Vol. 51, Issue 11. P. 2109–2116. doi: https://doi.org/10.1016/j.enconman.2010.03.003 

Vasiliev L. L. Heat pipes in modern heat exchangers // Applied Thermal Engineering. 2005. Vol. 25, Issue 1. P. 1–19. doi: https://doi.org/10.1016/j.applthermaleng.2003.12.004 

Vasiliev L. L. Micro and miniature heat pipes – Electronic component coolers // Applied Thermal Engineering. 2008. Vol. 28, Issue 4. P. 266–273. doi: https://doi.org/10.1016/j.applthermaleng.2006.02.023 

Thermal performance of screen mesh wick heat pipes with nanofluids / Putra N., Septiadi W. N., Rahman H., Irwansyah R. // Experimental Thermal and Fluid Science. 2012. Vol. 40. P. 10–17. doi: https://doi.org/10.1016/j.expthermflusci.2012.01.007 

Reay D., McGlen R., Kew P. Heat Pipe Theory Design and Applications. 5th ed. Elsevier, 2006. 384 p.

Solomon A. B., Ramachandran K., Pillai B. C. Thermal performance of a heat pipe with nanoparticles coated wick // Applied Thermal Engineering. 2012. Vol. 36. P. 106–112. doi: https://doi.org/10.1016/j.applthermaleng.2011.12.004 

The effect of orientation on U-shaped grooved and sintered wick heat pipes / Russel M. K., Young C., Cotton J. S., Ching C. Y. // Applied Thermal Engineering. 2011. Vol. 31, Issue 1. P. 69–76. doi: https://doi.org/10.1016/j.applthermaleng.2010.08.013 

Senthilkumar R., Vaidyanathan S., Sivaraman B. Effect of Inclination Angle in Heat Pipe Performance Using Copper Nanofluid // Procedia Engineering. 2012. Vol. 38. P. 3715–3721. doi: https://doi.org/10.1016/j.proeng.2012.06.427 

Kim S. J., Ki Seo J., Hyung Do K. Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure // International Journal of Heat and Mass Transfer. 2003. Vol. 46, Issue 11. P. 2051–2063. doi: https://doi.org/10.1016/s0017-9310(02)00504-5 

Improving thermal performance of miniature heat pipe for notebook PC cooling / Moon S. H., Hwang G., Yun H. G., Choy T. G., Kang Y. I. // Microelectronics Reliability. 2002. Vol. 42, Issue 1. P. 135–140. doi: https://doi.org/10.1016/s0026-2714(01)00226-8 

Visualization of Bubbles Formation on the Boiling Process in Tapering Heat Pipe With Variation Of Evaporator To Condenser Diameter Ratio / Sarip, Soeparman S., Yuliati L., Agus Choiron M. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 8 (93). P. 35–40. https://doi.org/10.15587/1729-4061.2018.133973

Thermal performance of different working fluids in a dual diameter circular heat pipe / Peyghambarzadeh S. M., Shahpouri S., Aslanzadeh N., Rahimnejad M. // Ain Shams Engineering Journal. 2013. Vol. 4, Issue 4. P. 855–861. doi: https://doi.org/10.1016/j.asej.2013.03.001 

Effect of capillary pressure on performance of a heat pipe: Numerical approach with FEM / Thuchayapong N., Nakano A., Sakulchangsatjatai P., Terdtoon P. // Applied Thermal Engineering. 2012. Vol. 32. P. 93–99. doi: https://doi.org/10.1016/j.applthermaleng.2011.08.034 

Miniature loop heat pipes for electronics cooling / Pastukhov V. G., Maidanik Y. F., Vershinin C. V., Korukov M. A. // Applied Thermal Engineering. 2003. Vol. 23, Issue 9. P. 1125–1135. doi: https://doi.org/10.1016/s1359-4311(03)00046-2 

Steady-state and transient performance of a miniature loop heat pipe / Chen Y., Groll M., Mertz R., Maydanik Y. F., Vershinin S. V. // International Journal of Thermal Sciences. 2006. Vol. 45, Issue 11. P. 1084–1090. doi: https://doi.org/10.1016/j.ijthermalsci.2006.02.003 







Copyright (c) 2018 Sarip Sarip, Sudjito Soeparman, Lilis Yuliati, Moch. Agus Choiron

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061