DOI: https://doi.org/10.15587/1729-4061.2018.142061

Selection of new working fluids for a heat-using compression refrigerating machine with the block «turbine- compressor»

Larisa Morozyuk, Bohdan Hrudka, Olena Yuzhakova

Abstract


The compression heat-using refrigerating machines operating in the Chistiakov-Plotnikov cycle use recycled waste heat of power machines as primary energy for producing cold of various temperature potentials thus saving fuel and energy resources. Development and improvement of machines is associated with the use of new working fluids. A selecting method of working fluids for a machine with a block «turbine-compressor» was proposed from the standpoints of such fundamental characteristics as energy saving and environmental safety. Mutual influence of properties of R134a, R290, R401a, R410a, R407a, R507, R600, R717 working fluids and design values of the block «turbine-compressor» in the given temperature regime of the thermodynamic cycle were studied with observance of equality of turbine and compressor powers. Design values of the full-size block «turbine-compressor» sample and the results of its experimental studies with the use of previous working fluids were used for the study.

The method of selection of the working fluids for the cold supply system of a particular consumer (a fruit storage) equipped with a small power machine was demonstrated on a particular example for a given temperature regime of cold production and the design values of the block. Introduction of the dimensionless equilibrium criterion in the analysis has made it possible to establish and evaluate dependence of the block design values on thermodynamic properties of the working fluids and conditions of its work and the field of rational application of any working fluids for a particular block design. The compression heat-using refrigerating machine is capable of efficient cold production with the studied working fluids in the trigeneration system of a small power machine.


Keywords


heat-using refrigerating machine; block «turbine-compressor»; working fluids; thermodynamic properties

Full Text:

PDF

References


Berlitz, T., Satzger, P., Summerer, F., Ziegler, F., Alefeld, G. (1999). A contribution to the evaluation of the economic perspectives of absorption chillers. International Journal of Refrigeration, 22 (1), 67–76. doi: https://doi.org/10.1016/s0140-7007(98)00040-1

Aly, W. I. A., Abdo, M., Bedair, G., Hassaneen, A. E. (2017). Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases. Applied Thermal Engineering, 114, 621–630. doi: https://doi.org/10.1016/j.applthermaleng.2016.12.019

Chen, Y., Han, W., Jin, H. (2016). Analysis of an absorption/absorption–compression refrigeration system for heat sources with large temperature change. Energy Conversion and Management, 113, 153–164. doi: https://doi.org/10.1016/j.enconman.2016.01.063

Jiang, L., Roskilly, A. P., Wang, R. Z., Wang, L. W. (2018). Analysis on innovative resorption cycle for power and refrigeration cogeneration. Applied Energy, 218, 10–21. doi: https://doi.org/10.1016/j.apenergy.2018.02.174

Chen, G., Volovyk, O., Zhu, D., Ierin, V., Shestopalov, K. (2017). Theoretical analysis and optimization of a hybrid CO 2 transcritical mechanical compression – ejector cooling cycle. International Journal of Refrigeration, 74, 86–94. doi: https://doi.org/10.1016/j.ijrefrig.2016.10.002

Petrenko, V. O., Huang, B. J., Ierin, V. O. (2011). Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle. International Journal of Refrigeration, 34 (7), 1649–1656. doi: https://doi.org/10.1016/j.ijrefrig.2010.11.012

Barenboym, A. B. (1974). Maloraskhodnye freonovye turbokompressory. Moscow: Mashinostroenie, 224.

Barenboym, A. B. (2000). Maloraskhodnye turbokompressory dlya kondicionirovaniya vozduha i ohlazhdeniya apparatury v transporte. Odessa: Studiya «Negociant», 265.

Barenboym, A. B. (2001). Turbomashiny dlya ohlazhdeniya nadduvochnogo vozduha dvigateley vnutrennego sgoraniya. Odessa: Studiya «Negociant», 98.

Barenboym, A. B. (2004). Holodil'nye centrobezhnye kompressory: monografiya. Odessa, 208.

Barenboim, А. B., Morosuk, T. V., Morosuk, L. I. (1998). Heat – using refrigeration machines for agriculture. Refrigeration science and technology, 6, 216–220.

Morozyuk, L. I., Morozyuk, T. V., Gayduk, S. V. (2014). Thermodynamic analysis of heat-energized refrigeration machine with carbon dioxide. Eastern-European Journal of Enterprise Technologies, 2 (8 (68)), 36–44. doi: https://doi.org/10.15587/1729-4061.2014.22990

Moroziuk, L. I., Haiduk, S. V., Hrudka, B. H. (2016). Analysis of the schematics of the compression heat-driven refrigeration machine with R744. Eastern-European Journal of Enterprise Technologies, 1 (8 (79)), 29–39. doi: https://doi.org/10.15587/1729-4061.2016.59470

Morosuk, L. I., Gaiduk, S. V., Grudka, B. G., Korzhuk, D. V. (2017). Low-Temperature Heat-Driven Compression Refrigeration Machines with R744. Refrigeration engineering and technology, 53 (2), 4–13. doi: https://doi.org/10.15673/ret.v53i2.588

Morosuk, T. et. al. (2016). Study of a tri-generation system based on a supercritical CO2 cycle. Proceedings 1st European Seminar on Supercritical CO2 (sCO2) Power Systems. Vienna.

Stirlin, H. (1964). Beitragzumtheorie der absorption-kaeltemaschintn. Kaeltechnik 16.

Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negociant», 712.


GOST Style Citations


A contribution to the evaluation of the economic perspectives of absorption chillers / Berlitz T., Satzger P., Summerer F., Ziegler F., Alefeld G. // International Journal of Refrigeration. 1999. Vol. 22, Issue 1. P. 67–76. doi: https://doi.org/10.1016/s0140-7007(98)00040-1 

Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases / Aly W. I. A., Abdo M., Bedair G., Hassaneen A. E. // Applied Thermal Engineering. 2017. Vol. 114. P. 621–630. doi: https://doi.org/10.1016/j.applthermaleng.2016.12.019 

Chen Y., Han W., Jin H. Analysis of an absorption/absorption–compression refrigeration system for heat sources with large temperature change // Energy Conversion and Management. 2016. Vol. 113. P. 153–164. doi: https://doi.org/10.1016/j.enconman.2016.01.063 

Analysis on innovative resorption cycle for power and refrigeration cogeneration / Jiang L., Roskilly A. P., Wang R. Z., Wang L. W. // Applied Energy. 2018. Vol. 218. P. 10–21. doi: https://doi.org/10.1016/j.apenergy.2018.02.174 

Theoretical analysis and optimization of a hybrid CO 2 transcritical mechanical compression – ejector cooling cycle / Chen G., Volovyk O., Zhu D., Ierin V., Shestopalov K. // International Journal of Refrigeration. 2017. Vol. 74. P. 86–94. doi: https://doi.org/10.1016/j.ijrefrig.2016.10.002 

Petrenko V. O., Huang B. J., Ierin V. O. Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle // International Journal of Refrigeration. 2011. Vol. 34, Issue 7. P. 1649–1656. doi: https://doi.org/10.1016/j.ijrefrig.2010.11.012 

Barenboym A. B. Maloraskhodnye freonovye turbokompressory: monografiya. Moscow: Mashinostroenie, 1974. 224 p.

Barenboym A. B. Maloraskhodnye turbokompressory dlya kondicionirovaniya vozduha i ohlazhdeniya apparatury v transporte: monografiya. Odessa: Studiya «Negociant», 2000. 265 p.

Barenboym A. B. Turbomashiny dlya ohlazhdeniya nadduvochnogo vozduha dvigateley vnutrennego sgoraniya: monografiya. Odessa: Studiya «Negociant», 2001. 98 p.

Barenboym A. B. Holodil'nye centrobezhnye kompressory: monografiya. Odessa, 2004. 208 p.

Barenboim А. B., Morosuk T. V., Morosuk L. I. Heat – using refrigeration machines for agriculture // Refrigeration science and technology. 1998. Vol. 6. P. 216–220.

Morozyuk L. I., Morozyuk T. V., Gayduk S. V. Thermodynamic analysis of heat-energized refrigeration machine with carbon dioxide // Eastern-European Journal of Enterprise Technologies. 2014. Vol. 2, Issue 8 (68). P. 36–44. doi: https://doi.org/10.15587/1729-4061.2014.22990 

Moroziuk L. I., Haiduk S. V., Hrudka B. H. Analysis of the schematics of the compression heat-driven refrigeration machine with R744 // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 1, Issue 8 (79). P. 29–39. doi: https://doi.org/10.15587/1729-4061.2016.59470 

Low-Temperature Heat-Driven Compression Refrigeration Machines with R744 / Morosuk L. I., Gaiduk S. V., Grudka B. G., Korzhuk D. V. // Refrigeration engineering and technology. 2017. Vol. 53, Issue 2. P. 4–13. doi: https://doi.org/10.15673/ret.v53i2.588 

Study of a tri-generation system based on a supercritical CO2 cycle / Morosuk T. et. al. // Proceedings 1st European Seminar on Supercritical CO2 (sCO2) Power Systems. Vienna, 2016.

Stirlin H. Beitragzumtheorie der absorption-kaeltemaschintn // Kaeltechnik 16. 1964.

Morozyuk T. V. Teoriya holodil'nyh mashin i teplovyh nasosov: monografiya. Odessa: Studiya «Negociant», 2006. 712 p.







Copyright (c) 2018 Larisa Morozyuk, Bohdan Hrudka, Olena Yuzhakova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061