DOI: https://doi.org/10.15587/1729-4061.2018.142159

Experimental study into the influence of straw content in fuel on parameters of generator gas

Gennadii Golub, Savelii Kukharets, Nataliya Tsyvenkova, Yaroslav Yarosh, Viacheslav Chuba

Abstract


A gasifier of specific design was proposed for gasification of straw containing fuels. Combustion and regeneration zones of this gasifier have the same diameter. A mixture of wood and straw pellets was used as a fuel. It was established that when using up to 40 % or less straw pellets in the fuel for 360 hours of the gasifier operation, there were no deposits on the grate.

A study was conducted to assess the effect of content of straw pellets in fuel on concentration and volume of CO in the gas, total gas yield, amount of gas produced per kilogram of fuel and duration of the proposed gasifier operation. The study result is represented by a one-factor equation. A two-factor experiment was carried out to establish the effect of content of straw pellets in the fuel on dynamics of changes in CO concentration in the gas in the course of the gasifier operation. A 2 kg portion of fuel was charged in each series of experiments, operation time and CO content in the gas were recorded at equal time intervals. The content of straw pellets in the fuel was increased from 0 % to 100 % in 20 % increments with each charge of the gasifier with fuel.

It has been established that for efficient gasification of straw-containing fuel without formation of solid deposits, it is rationally to add no more than 40 % of straw pellets to the fuel. When 40 % of straw was used in the fuel, concentration and volume of produced CO increased by 25 %, however, the gas yield decreased by 5.3 % compared to the use of wood. Although the 100 % content of straw pellets in the fuel resulted in a 44.3 % increase in CO concentration in the generator gas and a 40 % growth of CO volume, the total gas yield has reduced by 7.7 %. Duration of the gasifier operation (at a 2 kg fuel charge) has increased by 2.8 %. The growth of CO content at a 100 % content of straw in fuel has indicated a 13‒18 % increase in the calorific value of the resulting gas compared to a 100 % wood content.

Therefore, it is rational to use up to 100 % content of straw in the fuel although this requires the gasifier design preventing formation of stable deposits on the working surfaces.


Keywords


gasifier; generator gas; straw pellets; concentration and volume of CO; agglomeration

Full Text:

PDF

References


Golub, G., Kukharets, S., Yarosh, Y., Kukharets, V. (2017). Integrated use of bioenergy conversion technologies in agroecosystems. INMATEH – Agricultural Engineering, 51 (1), 93–100.

Europe 2020 indicators – climate change and energy (2016). EUROSTAT, State explain, 1–16.

Zolotovs’ka, O., Kharytonov, M., Onyshchenko, O. (2016). Аgricultural residues gasification, dependency of main operational parameters of the process on feedstock characteristics. INMATEH – Agricultural Engineering, 50 (3), 119–126.

Tsyvenkova, N. M., Golubenko, А. А., Kukharets, S. M., Biletsky, V. R. (2016). The research of downdraft gas producer heat productivity on straw. Annals of the Faculty of Engineering Hunedoara, 15 (3), 213–218.

Dubrovin, V. O., Korchemnyi, M. O., Maslo, I. P. et. al. (2004). Biopalyva (tekhnolohiyi, mashyny i obladnannia). Kyiv: TsTI “Enerhetyka i elektryfikatsiya”, 256.

Basu, P. (2013). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Elsevier, 548. doi: https://doi.org/10.1016/c2011-0-07564-6

EU Energy in Figures. Statistical Pocketbook 2012. Available at: https://publications.europa.eu/en/publication-detail/-/publication/4fbba65f-6690-4c3f-878a-e4ce0bc3515c/language-en/format-PDF/source-42292403

Reed, T. B., Das, A. (1988). Handbook of biomass downdraft gasifier engine systems. Golden: Solar Energy Research Institute. doi: https://doi.org/10.2172/5206099

Susastriawan, A. A. P., Saptoadi, H., Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989–1003. doi: https://doi.org/10.1016/j.rser.2017.03.112

Sheth, P. N., Babu, B. V. (2009). Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technology, 100 (12), 3127–3133. doi: https://doi.org/10.1016/j.biortech.2009.01.024

Gai, C., Dong, Y., Zhang, T. (2014). Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution. Energy, 71, 638–644. doi: https://doi.org/10.1016/j.energy.2014.05.009

Mysak, J., Lys, S., Martynyak-Andrushko, M. (2017). Research on gasification of low-grade fuels in a continuous layer. Eastern-European Journal of Enterprise Technologies, 2 (8 (86)), 16–23. doi: https://doi.org/10.15587/1729-4061.2017.96995

Mac an Bhaird, S. T., Walsh, E., Hemmingway, P., Maglinao, A. L., Capareda, S. C., McDonnell, K. P. (2014). Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material. Powder Technology, 254, 448–459. doi: https://doi.org/10.1016/j.powtec.2014.01.049

Wu, Z., Meng, H., Luo, Z., Chen, L., Zhao, J., Wang, S. (2017). Performance evaluation on co-gasification of bituminous coal and wheat straw in entrained flow gasification system. International Journal of Hydrogen Energy, 42 (30), 18884–18893. doi: https://doi.org/10.1016/j.ijhydene.2017.05.144

Sarker, S., Arauzo, J., Nielsen, H. K. (2015). Semi-continuous feeding and gasification of alfalfa and wheat straw pellets in a lab-scale fluidized bed reactor. Energy Conversion and Management, 99, 50–61. doi: https://doi.org/10.1016/j.enconman.2015.04.015

Vares, V., Kasyk, Yu., Muyste, P. et. al. (2005). Spravochnik potrebitelya biotopliva. Tallinn: Tallinnskiy tekhnicheskiy universitet, 183.

Cerone, N., Zimbardi, F., Contuzzi, L., Prestipino, M., Carnevale, M. O., Valerio, V. (2017). Air-steam and oxy-steam gasification of hydrolytic residues from biorefinery. Fuel Processing Technology, 167, 451–461. doi: https://doi.org/10.1016/j.fuproc.2017.07.027

Ferreira, S. D., Lazzarotto, I. P., Junges, J., Manera, C., Godinho, M., Osório, E. (2017). Steam gasification of biochar derived from elephant grass pyrolysis in a screw reactor. Energy Conversion and Management, 153, 163–174. doi: https://doi.org/10.1016/j.enconman.2017.10.006

Niu, M., Jin, B., Huang, Y., Wang, H., Dong, Q., Gu, H., Yang, J. (2018). Co-gasification of High-ash Sewage Sludge and Straw in a Bubbling Fluidized Bed with Oxygen-enriched Air. International Journal of Chemical Reactor Engineering, 16 (5). doi: https://doi.org/10.1515/ijcre-2017-0044

Poltavets, V. I., Yaziev, A. S. (2006). Pat. No. 75529 UA. Hazohenerator dlia hazyfikatsiyi tverdoho palyva. No. 20040907430; declareted: 10.09.2004; published: 7.04.2006, Bul. No. 4.

Tsyvenkova, N. M., Holubenko, A. A. (2012). Pat. No. 107219 UA. Sposib formuvannia zony horinnia i hazyfikatsiyi ta hazohenerator dlia yoho zdiysnennia. No. a201211797; declareted: 12.10.2012; published: 10.12.2014, Bul. No. 23.

Kukharets, S. M., Yarosh, Ya. D., Biletskyi, V. R., Holub, H. A. (2016). Osoblyvosti vykorystannia malohabarytnykh hazoheneratornykh moduliv. Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannia novoi tekhniky i tekhnolohii dlia silskoho hospodarstva Ukrainy. 2016. Issue 20 (34). P. 457–464.

Tokarev, G. G. (1955). Gazogeneratornye avtomobili. Moscow: Mashgiz, 207.

Kollerov, L. K. (1951). Gazomotornye ustanovki. Leningrad: Mashgiz, 239.

Pylypchuk, M. I., Hryhoriev, A. S., Shostak, V. V. (2007). Osnovy naukovykh doslidzhen. Lviv: Znannia, 234.

Dejtrakulwong, C., Patumsawad, S. (2014). Four Zones Modeling of the Downdraft Biomass Gasification Process: Effects of Moisture Content and Air to Fuel Ratio. Energy Procedia, 52, 142–149. doi: https://doi.org/10.1016/j.egypro.2014.07.064

Jiansheng, Z., Junfu, L., Xin, W., Hai, Z., Guangxi, Y., Toshiyuki, S., Junichi, S. (2007). Characterization of Pressure Signals in Fluidized Beds Loaded with Large Particles Using Wigner Distribution Analysis: Feasibility of Diagnosis of Agglomeration. Chinese Journal of Chemical Engineering, 15 (1), 24–29. doi: https://doi.org/10.1016/s1004-9541(07)60029-9


GOST Style Citations


Integrated use of bioenergy conversion technologies in agroecosystems / Golub G., Kukharets S., Yarosh Y., Kukharets V. // INMATEH – Agricultural Engineering. 2017. Vol. 51, Issue 1. P. 93–100.

Europe 2020 indicators – climate change and energy // EUROSTAT, State explain. 2016. P. 1–16.

Zolotovs’ka O., Kharytonov M., Onyshchenko O. Аgricultural residues gasification, dependency of main operational parameters of the process on feedstock characteristics // INMATEH – Agricultural Engineering. 2016. Vol. 50, Issue 3. P. 119–126.

The research of downdraft gas producer heat productivity on straw / Tsyvenkova N. M., Golubenko А. А., Kukharets S. M., Biletsky V. R. // Annals of the Faculty of Engineering Hunedoara. 2016. Vol. 15, Issue 3. P. 213–218.

Biopalyva (tekhnolohiyi, mashyny i obladnannia) / Dubrovin V. O., Korchemnyi M. O., Maslo I. P. et. al. Kyiv: TsTI “Enerhetyka i elektryfikatsiya”, 2004. 256 p.

Basu P. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Elsevier, 2013. 548 p. doi: https://doi.org/10.1016/c2011-0-07564-6 

EU Energy in Figures. Statistical Pocketbook 2012. URL: https://publications.europa.eu/en/publication-detail/-/publication/4fbba65f-6690-4c3f-878a-e4ce0bc3515c/language-en/format-PDF/source-42292403

Reed T. B., Das A. Handbook of biomass downdraft gasifier engine systems. Golden: Solar Energy Research Institute, 1988. doi: https://doi.org/10.2172/5206099 

Susastriawan A. A. P., Saptoadi H., Purnomo Small-scale downdraft gasifiers for biomass gasification: A review // Renewable and Sustainable Energy Reviews. 2017. Vol. 76. P. 989–1003. doi: https://doi.org/10.1016/j.rser.2017.03.112 

Sheth P. N., Babu B. V. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier // Bioresource Technology. 2009. Vol. 1001, Issue 12. P. 3127–3133. doi: https://doi.org/10.1016/j.biortech.2009.01.024 

Gai C., Dong Y., Zhang T. Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution // Energy. 2014. Vol. 71. P. 638–644. doi: https://doi.org/10.1016/j.energy.2014.05.009 

Mysak J., Lys S., Martynyak-Andrushko M. Research on gasification of low-grade fuels in a continuous layer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 8 (86). P. 16–23. doi: https://doi.org/10.15587/1729-4061.2017.96995 

Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material / Mac an Bhaird S. T., Walsh E., Hemmingway P., Maglinao A. L., Capareda S. C., McDonnell K. P. // Powder Technology. 2014. Vol. 254. P. 448–459. doi: https://doi.org/10.1016/j.powtec.2014.01.049 

Performance evaluation on co-gasification of bituminous coal and wheat straw in entrained flow gasification system / Wu Z., Meng H., Luo Z., Chen L., Zhao J., Wang S. // International Journal of Hydrogen Energy. 2017. Vol. 42, Issue 30. P. 18884–18893. doi: https://doi.org/10.1016/j.ijhydene.2017.05.144 

Sarker S., Arauzo J., Nielsen H. K. Semi-continuous feeding and gasification of alfalfa and wheat straw pellets in a lab-scale fluidized bed reactor // Energy Conversion and Management. 2015. Vol. 99. P. 50–61. doi: https://doi.org/10.1016/j.enconman.2015.04.015 

Spravochnik potrebitelya biotopliva / Vares V., Kasyk Yu., Muyste P. et. al. Tallinn: Tallinnskiy tekhnicheskiy universitet, 2005. 183 p.

Air-steam and oxy-steam gasification of hydrolytic residues from biorefinery / Cerone N., Zimbardi F., Contuzzi L., Prestipino M., Carnevale M. O., Valerio V. // Fuel Processing Technology. 2017. Vol. 167. P. 451–461. doi: https://doi.org/10.1016/j.fuproc.2017.07.027 

Steam gasification of biochar derived from elephant grass pyrolysis in a screw reactor / Ferreira S. D., Lazzarotto I. P., Junges J., Manera C., Godinho M., Osório E. // Energy Conversion and Management. 2017. Vol. 153. P. 163–174. doi: https://doi.org/10.1016/j.enconman.2017.10.006 

Co-gasification of High-ash Sewage Sludge and Straw in a Bubbling Fluidized Bed with Oxygen-enriched Air / Niu M., Jin B., Huang Y., Wang H., Dong Q., Gu H., Yang J. // International Journal of Chemical Reactor Engineering. 2018. Vol. 16, Issue 5. doi: https://doi.org/10.1515/ijcre-2017-0044 

Poltavets V. I., Yaziev A. S. Hazohenerator dlia hazyfikatsiyi tverdoho palyva: Pat. No. 75529 UA. No. 20040907430; declareted: 10.09.2004; published: 7.04.2006, Bul. No. 4.

Tsyvenkova N. M., Holubenko A. A. Sposib formuvannia zony horinnia i hazyfikatsiyi ta hazohenerator dlia yoho zdiysnennia: Pat. No. 107219 UA. No. a201211797; declareted: 12.10.2012; published: 10.12.2014, Bul. No. 23.

Osoblyvosti vykorystannia malohabarytnykh hazoheneratornykh moduliv / Kukharets S. M., Yarosh Ya. D., Biletskyi V. R., Holub H. A. // Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannia novoi tekhniky i tekhnolohii dlia silskoho hospodarstva Ukrainy. 2016. Issue 20 (34). P. 457–464.

Tokarev G. G. Gazogeneratornye avtomobili. Moscow: Mashgiz, 1955. 207 p.

Kollerov L. K. Gazomotornye ustanovki. Leningrad: Mashgiz, 1951. 239 p.

Pylypchuk M. I., Hryhoriev A. S., Shostak V. V. Osnovy naukovykh doslidzhen. Lviv: Znannia, 2007. 234 p.

Dejtrakulwong C., Patumsawad S. Four Zones Modeling of the Downdraft Biomass Gasification Process: Effects of Moisture Content and Air to Fuel Ratio // Energy Procedia. 2014. Vol. 52. P. 142–149. doi: https://doi.org/10.1016/j.egypro.2014.07.064 

Characterization of Pressure Signals in Fluidized Beds Loaded with Large Particles Using Wigner Distribution Analysis: Feasibility of Diagnosis of Agglomeration / Jiansheng Z., Junfu L., Xin W., Hai Z., Guangxi Y., Toshiyuki S., Junichi S. // Chinese Journal of Chemical Engineering. 2007. Vol. 15, Issue 1. P. 24–29. doi: https://doi.org/10.1016/s1004-9541(07)60029-9 







Copyright (c) 2018 Gennadii Golub, Savelii Kukharets, Nataliya Tsyvenkova, Yaroslav Yarosh, Viacheslav Chuba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061