Development of complex-structure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142483

Keywords:

deep mining, iron ore, stress, stability, chamber system of development

Abstract

In order to keep their positions in the world markets, mining enterprises of the Kryvyi Rih iron ore field using the deep-mine method need to develop a resource-saving technology for the development of the fields represented by complex-structure ore deposits. Development of the resource-saving technology must be carried out at the initial stage which is directly related to ore extraction and affects content of iron in the extracted ore mass. Growth of iron content in the extracted ore mass can be achieved through the use of selective development of the extraction blocks by means of the chamber development systems.

The existing procedure of determining structural components of the chamber system of development applied at the Kryvbas mines does not take into account thickness of the overlying strata on the side of the hanging wall of the cleaning chamber when calculating the exposure strike. Therefore, it is necessary to improve the procedure for determining the structural components of the chamber system of development when working out complex ore fields, in order to obtain high extraction rates.

For the development of the extraction block, it was suggested to carry out the cleaning works sequentially from the hanging to the lying wall of the complex-structure ore field with the use of the chamber system of development with leaving the non-ore or ore-containing inclusion in the pillar. This sequence of cleaning will reduce concentration of tensile and compressive stresses in the middle part of the non-ore or ore-containing inclusion which will contribute to a 1.5‒2.0-time increase in its stability.

It has been established that stability of the cleaning chamber, in addition to its dimensions and physico-mechanical properties of the ore, is influenced by horizontal thickness of the inclusion, safety factor, its life span and the sequence of cleaning in the extraction block. Thus, at the safety factor of rocks of the non-ore inclusion less than 10–12, it is expedient to use the sublevel-chamber version of the development system, otherwise, the horizonal-chamber version.

Author Biographies

Serhii Pysmennyi, State institution of higher education «Kryvyi Rih National University» Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of underground mining of mineral deposits

Dmytro Brovko, State institution of higher education «Kryvyi Rih National University» Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of building geotechnologies

Natalya Shwager, State institution of higher education «Kryvyi Rih National University» Vitaliya Matusevicha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of technical sciences, Professor

Department of Labor and Law

Iryna Kasatkina, Academy of Mining Sciences of Ukraine Pushkina str., 37, Kryvyi Rih, Ukraine, 50002

PhD, Associate Professor, Researcher

Scientific and production complex of iron, manganese and polymetallic ores

Dmitriy Paraniuk, PJSC "ArcelorMittal Kryvyi Rih" Krivorozhstali str., 1, Kryvyi Rih, Ukraine, 50000

PJSC "ArcelorMittal Kryvyi Rih"

Krivorozhstali str., 1, Kryvyi Rih, Ukraine, 50000

Oleksandra Serdiuk, Academy of Mining Sciences of Ukraine Pushkina str., 37, Kryvyi Rih, Ukraine, 50002

Researcher

Scientific and production complex of iron, manganese and polymetallic ores

References

  1. Kolosov, V. A., Volovik, V. P., Dyadechkin, N. I. (2000). Sovremennoe sostoyanie i perspektivy razvitiya predpriyatiy po dobyche i pererabotke zhelezorudnogo i flyusovogo syr'ya v Ukraine. Gorniy zhurnal, 6, 162–168.
  2. Stupnik, N., Kalinichenko, V., Pismennyi, S. (2013). Pillars sizing at magnetite quartzites room-work. Mining of Mineral Deposits, 11–15. doi: https://doi.org/10.1201/b16354-4
  3. Morkun, V., Tron, V., Goncharov, S. (2015). Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of high-energy ultrasound. Metallurgical and Mining Industry, 2, 31–34.
  4. Mulyavko, V. I., Oleynik, T. A., Oleynik, M. O., Mikhno, S. V., Lyashenko, V. I. (2014). Innovation technologies and machinery for separation of feebly magnetic ores. Obogashchenie Rud, 2, 43–49.
  5. Morkun, V., Tcvirkun, S. (2014). Investigation of methods of fuzzy clustering for determining ore types. Metallurgical and Mining Industry, 5, 12–15.
  6. Fedko, M. B., Kolosov, V. A., Kalinichenko, Ye. V., Pismennyi, S. V. (2014). Economic aspects of change-over to TNT-free explosives for the purposes of ore underground mining in Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 79–84.
  7. Khomenko, О., Sudakov, А., Malanchuk, Z., Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 35–43.
  8. Shchelkanov, V. A., Hivrenko, O. Ya., Hivrenko, V. O. (2001). Analiz slozhnostrukturnyh zalezhey Krivbassa. Razrabotka rudnyh mestorozhdeniy, 75, 30–35.
  9. Oleynik, T. A., Mulyavko, V. I., Lyashenko, V. I. (2018). Novye tekhnologii i tekhnicheskie sredstva dlya suhogo pyleulavlivaniya pri pererabotke zheleznoy rudy. Gorniy zhurnal, 2, 78–84.
  10. Pysmennyi, S. V. (2017). Metodyka vyznachennia aktyvnoi zony sklepoutvorennia na konturi pidzemno-transportnoi vyrobky pry kombinovaniy rozrobtsi zalizorudnykh rodovyshch. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Mekhaniko-tekhnolohichni systemy ta kompleksy, 16 (1238), 99–106.
  11. Morkun, V., Tron, V. (2014). Ore preparation energy-efficient automated control multi-criteria formation with considering of ecological and economic factors. Metallurgical and Mining Industry, 5, 8–11.
  12. Morkun, V., Morkun, N., Pikilnyak, A. (2015). Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry, 2, 35–38.
  13. Andreev, B. M., Brovko, D. V., Khvorost, V. V. (2015). Determination of reliability and justification of object parameters on the surface of mines taking into account change-over to the lighter enclosing structures. Metallurgical and mining industry, 12, 378–382.
  14. Morkun, V., Morkun, N., Tron, V. (2015). Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric uncertainty. Metallurgical and Mining Industry, 5, 7–11.
  15. Stupnik, N., Kalinichenko, V., Kolosov, V., Pismennyi, S., Shepel, A. (2014). Modeling of stopes in soft ores during ore mining. Metallurgical and mining industry, 3, 32–36.
  16. Lavrinenko, V. F., Lysak, V. I. (1991). Uroven' udaroopasnosti porod na glubokih gorizontah shaht Krivbassa. Razrabotka rudnyh mestorozhdeniy, 52, 30–37.
  17. Dineva, S., Boskovic, M. (2017). Evolution of seismicity at Kiruna Mine. Deep Mining 2017: Eighth International Conference on Deep and High Stress Mining, 125–139. Available at: https://papers.acg.uwa.edu.au/p/1704_07_Dineva/
  18. Biruk, Y., Mwagalanyi, H. (2010). Investigation of Rock-fall and Support Damage Induced by Seismic Motion at Kiirunavaara Mine. Department of Civil, Environmental and Natural Resources Engineering, 81. Available at: http://www.diva-portal.org/smash/get/diva2:1031854/FULLTEXT02.pdf
  19. Lutsenko, I., Fomovskaya, E., Koval, S., Serdiuk, O. (2017). Development of the method of quasi-optimal robust control for periodic operational processes. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 52–60. doi: https://doi.org/10.15587/1729-4061.2017.107542
  20. Lutsenko, I., Fomovskaya, O., Konokh, I., Oksanych, I. (2017). Development of a method for the accelerated two-stage search for an optimal control trajectory in periodical processes. Eastern-European Journal of Enterprise Technologies, 3 (1 (87)), 47–55. doi: https://doi.org/10.15587/1729-4061.2017.103731
  21. Lutsenko, I., Tytiuk, V., Oksanych, I., Rozhnenko, Z. (2017). Development of the method for determining optimal parameters of the process of displacement of technological objects. Eastern-European Journal of Enterprise Technologies, 6 (3 (90)), 41–48. doi: https://doi.org/10.15587/1729-4061.2017.116788
  22. Stupnik, N. I., Kalinichenko, V. A., Kolosov, V. A., Pismenniy, S. V., Fedko, M. B. (2014). Testing complex-structural magnetite quartzite deposits chamber system design theme. Metallurgical and Mining Industry, 2, 88–93.
  23. Vladyko, O., Kononenko, M., Khomenko, O. (2012). Imitating modeling stability of mine workings. New techniques and technologies in mining. Netherlands: CRC Press Balkema, 147–150.
  24. Khomenko, O., Maltsev, D. (2013). Laboratory research of influence of face area dimensions on the state of uranium ore layers being broken. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 31–37.
  25. Stupnik, N. I., Fedko, M. B. Pismenniy, S. V., Kolosov, V. A. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise SKHIDHZK. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 21–25.
  26. Khomenko, О., Sudakov, А, Malanchuk, Z., Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 34–43.
  27. Carusone, O., Hudyma, M.; Hudyma, M., Potvin, Y. (Eds.) (2017). Variations in apparent stress and energy index as indicators of stress and yielding around excavations. Proceedings of the First International Conference on Underground Mining Technology. Australian Centre for Geomechanics. Perth, 205–218.
  28. Khomenko, O., Kononenko, M., Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining of Mineral Deposits, 11 (2), 59–67. doi: https://doi.org/10.15407/mining11.02.059
  29. Hudyma, M. R., Potvin, Y., Grant, D. R., Milne, D., Brummer, R. K., Board, M. (1994). Geomechanics of Sill Pillar Mining. Rock Mechanics Models and Measurements Challenges from Industry. Proceedings of the 1st North American Rock Mechanics Symposium. Rotterdam: Brooklfield, 969–976.
  30. Neittaanmäki, P., Repin, S., Tuovinen, T. (Eds.) (2016). Mathematical Modeling and Optimization of Complex Structures. Springer, 328. doi: https://doi.org/10.1007/978-3-319-23564-6
  31. Marchenko, A., Chepurnoy, A., Senko, V., Makeev, S., Litvinenko, O., Sheychenko, R. et. al. (2017). Analysis and synthesis of complex spatial thin-walled structures. Proceedings of the Institute of Vehicles. Institute of Vehicles of Warsaw University of Technology, 1, 17–29.
  32. Tkachuk, M., Bondarenko, M., Grabovskiy, A., Sheychenko, R., Graborov, R., Posohov, V. et. al. (2018). Thin­walled structures: analysis of the stressed­strained state and parameter validation. Eastern-European Journal of Enterprise Technologies, 1 (7 (91)), 18–29. doi: https://doi.org/10.15587/1729-4061.2018.120547
  33. Golik, V., Komashchenko, V., Morkun, V. (2015). Innovative technologies of metal extraction from the ore processing mill tailings and their integrated use. Metallurgical and Mining Industry, 3, 49–52.
  34. Golik, V., Komashchenko, V., Morkun, V. (2015). Feasibility of using the mill tailings for preparation of self-hardening mixtures. Metallurgical and Mining Industry, 3, 38–41.
  35. Golik, V., Komashchenko, V., Morkun, V. (2015). Geomechanical terms of use of the mill tailings for preparation. Metallurgical and Mining Industry, 4, 321–324.
  36. Kononenko, M., Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New techniques and technologies in mining. Netherlands: CRC Press Balkema, 193–197.
  37. Morkun, V., Morkun, N., Pikilnyak, A. (2014). Iron ore flotation process control and optimization using high-energy ultrasound. Metallurgical and Mining Industry, 2, 36–42.
  38. Tarasyutin, V. M. (2015). Geotechnology features of high quality martite ore from deep mines of Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 54–60.
  39. Khomenko, O. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 44–54.
  40. Carikovskiy, V. V., Sakovich, V. V., Nedzveckiy, A. V. (1987). Opredelenie i kontrol' dopustimyh razmerov konstruktivnyh elementov sistem razrabotki na rudnikah Krivbassa. Krivoy Rog: NIGRI, 35.
  41. Khomenko, O., Kononenko, M., Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Mining of Mineral Deposits. Netherlands: CRC Press Balkema, 231–235.
  42. Morkun, V., Morkun, N., Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry, 6, 8–11.
  43. Morkun, V., Morkun, N., Pikilnyak, A. (2014). The gas bubble size distribution control formation in the flotation process. Metallurgical and Mining Industry, 4, 42–45.
  44. Morkun, V., Gubin, G., Oliinyk, T., Lotous, V., Ravinskaia, V., Tron, V. et. al. (2017). High-energy ultrasound to improve the quality of purifying the particles of iron ore in the process of its enrichment. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 41–51. doi: https://doi.org/10.15587/1729-4061.2017.118448
  45. Plevako, V., Potapov, V., Kycenko, V., Lebedynecj, I., Pedorych, I. (2016). Analytical study of the bending of isotropic plates, inhomogeneous in thickness. Eastern-European Journal of Enterprise Technologies, 4 (7 (82)), 10–16. doi: https://doi.org/10.15587/1729-4061.2016.75052
  46. Stupnik, M. I., Kalinichenko, V. O., Pysmennyi, S. V., Kalinichenko, O. V. (2018). Determining the qualitative composition of the equivalent material for simulation of Kryvyi Rih iron ore basin rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 21–27. doi: https://doi.org/10.29202/nvngu/2018-4/4

Downloads

Published

2018-09-18

How to Cite

Pysmennyi, S., Brovko, D., Shwager, N., Kasatkina, I., Paraniuk, D., & Serdiuk, O. (2018). Development of complex-structure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. Eastern-European Journal of Enterprise Technologies, 5(1 (95), 33–45. https://doi.org/10.15587/1729-4061.2018.142483

Issue

Section

Engineering technological systems