Developing and programming the algorithm of refinement of the crystal structure of materials with possible isomorphous substitution

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.142752

Keywords:

algorithm for analysis of diffractograms, structure refinement, FullProf, structural analysis, solid solution

Abstract

In general, the software for analyzing data using the X-ray diffraction method does not include the possibility for using stoichiometric principles between chemical elements and the relations between the occupation of crystallographic positions by atoms. In the article, the algorithm and its program realization for defining the distribution of atoms according to the crystallographic positions using stoichiometric principles in materials with isomorphous substitution are developed. A combination of using the developed algorithm and the FullProf program is proposed for taking into account different conditions that should be satisfied by the distribution of atoms according to the crystallographic positions. It is proposed to estimate the unambiguity of the initially defined distribution of atoms by finding local minima in certain physically substantiated limits of changes in the parameters of the structure. The complex method for minimization of a function of the deviation of the theoretically calculated diffractograms from the experimental ones is given to avoid falling of the objective function to a local minimum. Two ways for minimization of the difference between theoretically calculated and experimental diffractograms are proposed. By the first of them, with the help of the developed algorithm, the occupation of crystallographic positions can be established, and the minimization method built-in in FullProf calculates all other parameters. By the other way, the developed algorithm is used only and the rest of parameters approximately calculated by FullProf before are fixed. The efficiency of the developed algorithm is illustrated by finding the distribution of atoms in sublattices in ferrite-spinels. The developed algorithm can be used for any materials in which isomorphous substitution is possible, such as spinels, garnets, perovskites, and others

Author Biographies

Ivan Yaremiy, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science and New Technologies

Sofiya Yaremiy, Ivano-Frankivsk National Medical University Halytska str., 2, Ivano-Frankivsk, Ukraine, 76018

PhD, Assistant

Department of Medical Informatics, Medical and Biological Physics

Vasyl Fedoriv, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Materials Science and New Technologies

Olesia Vlasii, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Informatics

Anna Luсas, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Chemistry of the Environment and Chemical Education

References

  1. Chung, F., Smith, D. (Eds.) (1999). Industrial Applications of X-Ray Diffraction. Boca Raton London New York: CRC Press, 1006. doi: https://doi.org/10.1201/b16940
  2. Bunaciu, A. A., Udriştioiu, E. gabriela, Aboul-Enein, H. Y. (2015). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 45 (4), 289–299. doi: https://doi.org/10.1080/10408347.2014.949616
  3. Ostafiychuk, B. K., Gasyuk, I. M., Kopayev, O. V. (2001). The Model of Solid Solution of Magnesium-Zinc Ferrites. Physics and Chemistry of Solid State, 2 (2), 201–206. Available at: http://old.pu.if.ua/inst/phys_che/start/pcss/vol2/number2/0202-04.pdf
  4. The Collaborative Computational Projects. Available at: http://www.ccp14.ac.uk/index.html
  5. Connolly, J. R. Free and Inexpensive Software Alternatives for X-ray Diffraction. Available at: http://epswww.unm.edu/media/pdf/10-XRD-Software.pdf
  6. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2 (2), 65–71. doi: https://doi.org/10.1107/s0021889869006558
  7. Kraus, W., Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29 (3), 301–303. doi: https://doi.org/10.1107/s0021889895014920
  8. FullProf Suite. Available at: https://www.ill.eu/sites/fullprof/
  9. Yakimov, I. S., Zaloga, A. N., Solov’ev, L. A., Yakimov, Y. I. (2012). Method of evolutionary structure-sensitive quantitative X-ray phase analysis of multiphase polycrystalline materials. Inorganic Materials, 48 (14), 1285–1290. doi: https://doi.org/10.1134/s0020168512140208
  10. Bruker (2017). TOPAS. Version 6. Bruker AXS, Karlsruhe, Germany.
  11. Altomare, A., Capitelli, F., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi, R. (2018). The Rietveld Refinement in the EXPO Software: A Powerful Tool at the End of the Elaborate Crystal Structure Solution Pathway. Crystals, 8 (5), 203. doi: https://doi.org/10.3390/cryst8050203
  12. Materials Analysis Using Diffraction. Available at: http://maud.radiographema.eu/
  13. Zaloga, A. N., Dubinin, P. S., Yakimov, I. S., Bezrukova, O. E., Burakov, S. V., Gusev, K. A., Semenkina, M. E. (2018). Evolutionary quantitative full-profile X-ray phase analysis based on the rietveld method, a self-configurable multipopulation genetic algorithm and elemental analysis data. Industrial laboratory. Diagnostics of materials, 84 (3), 25–31. doi: https://doi.org/10.26896/1028-6861-2018-84-3-25-31
  14. Coelho, A. A. (2018). TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of Applied Crystallography, 51 (1), 210–218. doi: https://doi.org/10.1107/s1600576718000183
  15. Letyuk, L. M., Kostishin, V. G., Gonchar, A. V. (2005). Tekhnologiya ferritovyh materialov magnitoelektroniki. Moscow: MISIS, 352.
  16. Valenzuela, R. (2005). Magnetic Ceramics. Cambridge University Press.
  17. Pua, P. (1972). Sootnoshenie mezhdu rasstoyaniyami anion-kation i parametrami reshetki. Himiya tverdogo tela, 49–75.
  18. Erastova, A. P., Saksonov, Yu. G. (1963). Issledovanie strukturnyh izmeneniy v magnievyh hromitah-ferritah. Ferrity i beskontaktnye element, 152–162.
  19. Matkivskyi, M. P., Perkatiuk, I. Y., Lisniak, S. S. (2003). Systema kharakterystychnykh mizhatomnykh vidstanei. Pomylkovist zastosuvannia ionnykh radiusiv v krystalokhimiyi. Ukr. khim. Zhurnal, 69 (8), 88–94.
  20. Lutsas, A. V., Yaremiy, I. P., Matkivskyi, M. P. (2015). Peculiar properties of crystal-chemical stucture of spinels of the system Mg(FexCr2-x)O4 obtained through the hydroxide coprecipitation method and solid state technology. Eastern-European Journal of Enterprise Technologies, 5 (6 (77)), 57–63. doi: https://doi.org/10.15587/1729-4061.2015.51058
  21. Reznickiy, L. A. (1984). Energii predpochteniya kationov i obrazovanie tverdyh rastvorov shpineley. Neorgan. materialy, 20 (11), 1867–1869.
  22. Ostafyichuk, B. K., Hasiuk, I. M., Mokliak, V. V., Deputat, B. Ya., Yaremiy, I. P. (2010). Rozuporiadkuvannia struktury tverdykh rozchyniv litiy-zaliznoi ta litiy-aliuminiyovoi shpineli. Metallofyzyka y noveishye tekhnolohiy, 32 (2), 209–224.
  23. Luсas, A., Moklyak, V., Yaremiy, I., Yaremiy, S., Gasyuk, I., Matkivskyi, M. (2017). Mössbauer studies of spinellides of Mg(FeXCr2-X)O4 system obtained by the hydroxide co-precipitation method. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 56–63. doi: https://doi.org/10.15587/1729-4061.2017.112271
  24. Kopayev, A. V., Mokljak, V. V., Gasyuk, I. M., Yaremiy, I. P., Kozub, V. V. (2015). Structure Ordering in Mg-Zn Ferrite Nanopowders Obtained by the Method of Sol-Gel Autocombustion. Solid State Phenomena, 230, 114–119. doi: https://doi.org/10.4028/www.scientific.net/ssp.230.114
  25. Bushkova, V. S., Ostafiychuk, B. K., Yaremij, I. P., Mokhnatskyi, M. L. (2016). Effect of Nickel-Ions’ Substitution with Nonmagnetic Cadmium Ions on the Structural and Optical Properties of Nickel Ferrite. Metallofizika i noveishie tekhnologii, 38 (5), 601–616. doi: https://doi.org/10.15407/mfint.38.05.0601
  26. Bushkova, V. S., Yaremiy, I. P., Ostafiychuk, B. K., Moklyak, V. V., Hrubiak, A. B. (2018). Mössbauer Study of Nickel-Substituted Cobalt Ferrites. Journal of Nano- and Electronic Physics, 10 (3), 03013-1–03013-5. doi: https://doi.org/10.21272/jnep.10(3).03013
  27. Bushkova, V. S., Yaremiy, I. P. (2018). Magnetic, electric, mechanical, and optical properties of NiCr x Fe 2−x O 4 ferrites. Journal of Magnetism and Magnetic Materials, 461, 37–47. doi: https://doi.org/10.1016/j.jmmm.2018.04.025
  28. Tatarchuk, T. R., Bououdina, M., Paliychuk, N. D., Yaremiy, I. P., Moklyak, V. V. (2017). Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. Journal of Alloys and Compounds, 694, 777–791. doi: https://doi.org/10.1016/j.jallcom.2016.10.067

Downloads

Published

2018-09-21

How to Cite

Yaremiy, I., Yaremiy, S., Fedoriv, V., Vlasii, O., & Luсas A. (2018). Developing and programming the algorithm of refinement of the crystal structure of materials with possible isomorphous substitution. Eastern-European Journal of Enterprise Technologies, 5(5 (95), 61–67. https://doi.org/10.15587/1729-4061.2018.142752

Issue

Section

Applied physics