DOI: https://doi.org/10.15587/1729-4061.2018.143126

“The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate

Vadym Kovalenko, Valerii Kotok

Abstract


Nickel hydroxide is widely used as an active material of supercapacitors. The most active are samples of Ni(OH)2 with (α+β) layered structure synthesized in a slit diaphragm electrolyzer. However, the processes that occur during filtering and drying, negatively impact electrochemical activity. The influence of microwave treatment of different times (from 0.5 to 5 min) on the structure, surface morphology and porous structure, and also on the electrochemical properties of nickel hydroxide samples prepared in a slit diaphragm electrolyzer, has been studied. A hypothesis was proposed on the existence of the “popcorn effect”: short-term high-power microwave irradiation of the wet sample would result in water boiling and internal explosion of the sample. Treated and untreated samples were studied by means of X-ray diffraction analysis, scanning electron microscopy and BET nitrogen adsorption-desorption. Electrochemical characteristics were studied by means of galvanostatic charge-discharge cycling in the supercapacitor regime. The existence of the “popcorn effect” has been confirmed by increased sample thickness after microwave treatment by 1.94 times, specific surface area 2.13 times, pore volume by 2.66 times, and average pore diameter by 1.46 times, It was discovered, that increasing treatment duration to 2–5 min leads to microwave drying. XRD results revealed the occurrence of ageing (crystallization) processes of nickel hydroxide during thermal drying and their absence upon realization of the “popcorn effect”. This results in the formation of X-ray amorphous samples. Comparative analysis of electrochemical characteristics of treated and untreated Ni(OH)2 samples was performed. An increase of specific capacity at high current densities (80 and 120 mA/cm2) for treated samples was observed: by 10.9 % upon microwave drying, 24–42 % upon realization of the “popcorn effect”. The maximum capacity of 231.1 F/g has been observed for the sample, in which the “popcorn effect” was realized the most. However, microwave treatment resulted in lower capacities at low cycling current density. This is related to the thermal treatment of the particle surface, caused by rapid boiling of water. A magnetron of a higher power is required for avoiding this negative effect

Keywords


nickel hydroxide; specific capacity; supercapacitor; microwave treatment;specific surface area; ageing

Full Text:

PDF

References


Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: https://doi.org/10.1038/nmat2297

Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011

Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1

Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0

Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7

Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7

Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e

Kovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406

Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806. doi: https://doi.org/10.1149/1.1865852

Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5

Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: https://doi.org/10.1149/1.1393480

Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239

Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050

Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c

Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041

Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: https://doi.org/10.15587/1729-4061.2017.90873

Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813

Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699

Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839

Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371

Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030

Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390

Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: https://doi.org/10.1021/jp303546r

Hermet, P., Gourrier, L., Bantignies, J.-L., Ravot, D., Michel, T., Deabate, S. et. al. (2011). Dielectric, magnetic, and phonon properties of nickel hydroxide. Physical Review B, 84 (23). doi: https://doi.org/10.1103/physrevb.84.235211

Gourrier, L., Deabate, S., Michel, T., Paillet, M., Hermet, P., Bantignies, J.-L., Henn, F. (2011). Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide. The Journal of Physical Chemistry C, 115 (30), 15067–15074. doi: https://doi.org/10.1021/jp203222t

Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2

Miao, C., Zhu, Y., Zhao, T., Jian, X., Li, W. (2015). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3−. Ionics, 21 (12), 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y

Li, Y., Yao, J., Zhu, Y., Zou, Z., Wang, H. (2012). Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 203, 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081

Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886

Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770

Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0

Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559

Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010

Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.

Li, L., Seng, K. H., Liu, H., Nevirkovets, I. P., Guo, Z. (2013). Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochimica Acta, 87, 801–808. doi: https://doi.org/10.1016/j.electacta.2012.08.127

Zhang, X., Sun, X., Zhang, H., Zhang, D., Ma, Y. (2013). Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochimica Acta, 87, 637–644. doi: https://doi.org/10.1016/j.electacta.2012.10.022

Ming, B., Li, J., Kang, F., Pang, G., Zhang, Y., Chen, L. et. al. (2012). Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. Journal of Power Sources, 198, 428–431. doi: https://doi.org/10.1016/j.jpowsour.2011.10.003

Zhu, Z., Wei, N., Liu, H., He, Z. (2011). Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO. Advanced Powder Technology, 22 (3), 422–426. doi: https://doi.org/10.1016/j.apt.2010.06.008

Mondal, A. K., Su, D., Chen, S., Zhang, J., Ung, A., Wang, G. (2014). Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 610-611, 115–120. doi: https://doi.org/10.1016/j.cplett.2014.07.025

Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q. et. al. (2012). Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 22 (12), 2632–2641. doi: https://doi.org/10.1002/adfm.201102839

Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: https://doi.org/10.1021/cm702207w

Zhang, X., Li, C., Miao, W., Sun, X., Wang, K., Ma, Y. (2015). Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences, 58 (11), 1871–1876. doi: https://doi.org/10.1007/s11431-015-5934-9

Xu, J., Dong, Y., Cao, J., Guo, B., Wang, W., Chen, Z. (2013). Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2–Co(OH)2 hollow microspheres and their supercapacitor applications. Electrochimica Acta, 114, 76–82. doi: https://doi.org/10.1016/j.electacta.2013.09.161

Araszkiewicz, M., Koziol, A., Oskwarek, A., Lupinski, M. (2004). Microwave Drying of Porous Materials. Drying Technology, 22 (10), 2331–2341. doi: https://doi.org/10.1081/drt-200040014

Jeanolovicius, L. A., Senise, J. T., do Nascimento, R. B. (2007). Microwave drying of zinc sulfate. 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. 2007. doi: https://doi.org/10.1109/imoc.2007.4404264

González, M. D., Cesteros, Y., Salagre, P. (2010). Effect of microwaves on the surface and acidic properties of dealuminated zeolites. Physics Procedia, 8, 104–108. doi: https://doi.org/10.1016/j.phpro.2010.10.019

Pinheiro, L. B., Martinelli, A. E., Fonseca, F. C. (2014). Effects of Microwave Processing on the Properties of Nickel Oxide/Zirconia/Ceria Composites. Advanced Materials Research, 975, 154–159. doi: https://doi.org/10.4028/www.scientific.net/amr.975.154

Soler-Illia, G. J. de A. A., Jobbágy, M., Regazzoni, A. E., Blesa, M. A. (1999). Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism. Chemistry of Materials, 11 (11), 3140–3146. doi: https://doi.org/10.1021/cm9902220

Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548

Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810


GOST Style Citations


Simon P., Gogotsi Y. Materials for electrochemical capacitors // Nature Materials. 2008. Vol. 7, Issue 11. P. 845–854. doi: https://doi.org/10.1038/nmat2297 

Burke A. R&D considerations for the performance and application of electrochemical capacitors // Electrochimica Acta. 2007. Vol. 53, Issue 3. P. 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011 

Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon / Lang J.-W., Kong L.-B., Liu M., Luo Y.-C., Kang L. // Journal of Solid State Electrochemistry. 2009. Vol. 14, Issue 8. P. 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1 

A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors / Lang J.-W., Kong L.-B., Wu W.-J., Liu M., Luo Y.-C., Kang, L. // Journal of Solid State Electrochemistry. 2008. Vol. 13, Issue 2. P. 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0 

Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors / Aghazadeh M., Ghaemi M., Sabour B., Dalvand S. // Journal of Solid State Electrochemistry. 2014. Vol. 18, Issue 6. P. 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7 

Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route / Zheng C., Liu X., Chen Z., Wu Z., Fang D. // Journal of Central South University. 2014. Vol. 21, Issue 7. P. 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7 

Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties / Wang B., Williams G. R., Chang Z., Jiang M., Liu J., Lei X., Sun X. // ACS Applied Materials & Interfaces. 2014. Vol. 6, Issue 18. P. 16304–16311. doi: https://doi.org/10.1021/am504530e 

Kovalenko V., Kotok V., Bolotin O. Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 6 (83). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406 

Ramesh T. N., Kamath P. V., Shivakumara C. Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode // Journal of The Electrochemical Society. 2005. Vol. 152, Issue 4. P. A806. doi: https://doi.org/10.1149/1.1865852 

Zhao Y., Zhu Z., Zhuang Q.-K. The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior // Journal of Solid State Electrochemistry. 2005. Vol. 10, Issue 11. P. 914–919. doi: https://doi.org/10.1007/s10008-005-0035-5 

Jayashree R. S., Kamath P. V., Subbanna G. N. The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide // Journal of The Electrochemical Society. 2000. Vol. 147, Issue 6. P. 2029. doi: https://doi.org/10.1149/1.1393480 

Jayashree R. S., Kamath P. V. Factors governing the electrochemical synthesis of α-nickel (II) hydroxide // Journal of Applied Electrochemistry. 1999. Vol. 29, Issue 4. P. 449–454. doi: https://doi.org/10.1023/a:1003493711239 

Ramesh T. N., Kamath P. V. Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder // Journal of Power Sources. 2006. Vol. 156, Issue 2. P. 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050 

Rajamathi M., Vishnu Kamath P., Seshadri R. Polymorphism in nickel hydroxide: role of interstratification // Journal of Materials Chemistry. 2000. Vol. 10, Issue 2. P. 503–506. doi: https://doi.org/10.1039/a905651c 

Structural transformation and its effects on the electrochemical performances of a layered double hydroxide / Hu M., Yang Z., Lei L., Sun Y. // Journal of Power Sources. 2011. Vol. 196, Issue 3. P. 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041 

Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods / Solovov V., Kovalenko V., Nikolenko N., Kotok V., Vlasova E. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 6 (85). P. 16–22. doi: https://doi.org/10.15587/1729-4061.2017.90873 

Kovalenko V., Kotok V. Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 6 (88). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813 

Kovalenko V., Kotok V. Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 6. P. 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699 

Kotok V., Kovalenko V. The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 12 (88). P. 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839 

Kotok V., Kovalenko V. The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 11 (86). P. 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371 

Vidotti M., Torresi R., Torresi S. I. C. de. Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries // Química Nova. 2010. Vol. 33, Issue 10. P. 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030 

Kovalenko V., Kotok V. Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 6 (89). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390 

Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel / Hall D. S., Lockwood D. J., Poirier S., Bock C., MacDougall B. R. // The Journal of Physical Chemistry A. 2012. Vol. 116, Issue 25. P. 6771–6784. doi: https://doi.org/10.1021/jp303546r 

Dielectric, magnetic, and phonon properties of nickel hydroxide / Hermet P., Gourrier L., Bantignies J.-L., Ravot D., Michel T., Deabate S. et. al. // Physical Review B. 2011. Vol. 84, Issue 23. doi: https://doi.org/10.1103/physrevb.84.235211 

Characterization of Unusually Large “Pseudo-Single Crystal” of β-Nickel Hydroxide / Gourrier L., Deabate S., Michel T., Paillet M., Hermet P., Bantignies J.-L., Henn F. // The Journal of Physical Chemistry C. 2011. Vol. 115, Issue 30. P. 15067–15074. doi: https://doi.org/10.1021/jp203222t 

Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications / Kovalenko V. L., Kotok V. A., Sykchin A. A., Mudryi I. A., Ananchenko B. A., Burkov A. A. et. al. // Journal of Solid State Electrochemistry. 2016. Vol. 21, Issue 3. P. 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2 

Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide by codoping with Ca2+ and PO4 3− / Miao C., Zhu Y., Zhao T., Jian X., Li W. // Ionics. 2015. Vol. 21, Issue 12. P. 3201–3208. doi: https://doi.org/10.1007/s11581-015-1507-y 

Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide / Li Y., Yao J., Zhu Y., Zou Z., Wang H. // Journal of Power Sources. 2012. Vol. 203. P. 177–183. doi: https://doi.org/10.1016/j.jpowsour.2011.11.081 

Kovalenko V., Kotok V. Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2 // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 6. P. 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886 

Kotok V., Kovalenko V., Malyshev V. Comparison of oxygen evolution parameters on different types of nickel hydroxide // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 12 (89). P. 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770 

Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers / Burmistr M. V., Boiko V. S., Lipko E. O., Gerasimenko K. O., Gomza Y. P., Vesnin R. L. et. al. // Mechanics of Composite Materials. 2014. Vol. 50, Issue 2. P. 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0 

Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis / Vlasova E., Kovalenko V., Kotok V., Vlasov S. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 5 (83). P. 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559 

Kotok V., Kovalenko V. Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 12 (87). P. 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010 

Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis / Kotok V. A., Kovalenko V. L., Kovalenko P. V., Solovov V. A., Deabate S., Mehdi A. et. al. // ARPN Journal of Engineering and Applied Sciences. 2017. Vol. 12, Issue 13. P. 3962–3977.

Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior / Li L., Seng K. H., Liu H., Nevirkovets I. P., Guo Z. // Electrochimica Acta. 2013. Vol. 87. P. 801–808. doi: https://doi.org/10.1016/j.electacta.2012.08.127 

Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors / Zhang X., Sun X., Zhang H., Zhang D., Ma Y. // Electrochimica Acta. 2013. Vol. 87. P. 637–644. doi: https://doi.org/10.1016/j.electacta.2012.10.022 

Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials / Ming B., Li J., Kang F., Pang G., Zhang Y., Chen L. et. al. // Journal of Power Sources. 2012. Vol. 198. P. 428–431. doi: https://doi.org/10.1016/j.jpowsour.2011.10.003 

Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO / Zhu Z., Wei N., Liu H., He Z. // Advanced Powder Technology. 2011. Vol. 22, Issue 2. P. 422–426. doi: https://doi.org/10.1016/j.apt.2010.06.008 

Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability / Mondal A. K., Su D., Chen S., Zhang J., Ung A., Wang G. // Chemical Physics Letters. 2014. Vol. 610-611. P. 115–120. doi: https://doi.org/10.1016/j.cplett.2014.07.025 

Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density / Yan J., Fan Z., Sun W., Ning G., Wei T., Zhang Q. et. al. // Advanced Functional Materials. 2012. Vol. 22, Issue 12. P. 2632–2641. doi: https://doi.org/10.1002/adfm.201102839 

41.      3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method / Xu L., Ding Y.-S., Chen C.-H., Zhao L., Rimkus C., Joesten R., Suib S. L. // Chemistry of Materials. 2008. Vol. 20, Issue   1. P. 308–316. doi:  https://doi.org/10.1021/cm702207w 

Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application / Zhang X., Li C., Miao W., Sun X., Wang K., Ma Y. // Science China Technological Sciences. 2015. Vol. 58, Issue 11. P. 1871–1876. doi: https://doi.org/10.1007/s11431-015-5934-9 

Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2–Co(OH)2 hollow microspheres and their supercapacitor applications / Xu J., Dong Y., Cao J., Guo B., Wang W., Chen Z. // Electrochimica Acta. 2013. Vol. 114. P. 76–82. doi: https://doi.org/10.1016/j.electacta.2013.09.161 

Microwave Drying of Porous Materials / Araszkiewicz M., Koziol A., Oskwarek A., Lupinski M. // Drying Technology. 2004. Vol. 22, Issue 10. P. 2331–2341. doi: https://doi.org/10.1081/drt-200040014 

Jeanolovicius L. A., Senise J. T., do Nascimento R. B. Microwave drying of zinc sulfate // 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. 2007. doi: https://doi.org/10.1109/imoc.2007.4404264 

González M. D., Cesteros Y., Salagre P. Effect of microwaves on the surface and acidic properties of dealuminated zeolites // Physics Procedia. 2010. Vol. 8. P. 104–108. doi: https://doi.org/10.1016/j.phpro.2010.10.019 

Pinheiro L. B., Martinelli A. E., Fonseca F. C. Effects of Microwave Processing on the Properties of Nickel Oxide/Zirconia/Ceria Composites // Advanced Materials Research. 2014. Vol. 975. P. 154–159. doi: https://doi.org/10.4028/www.scientific.net/amr.975.154 

Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism / Soler-Illia G. J. de A. A., Jobbágy M., Regazzoni A. E., Blesa M. A. // Chemistry of Materials. 1999. Vol. 11, Issue 11. P. 3140–3146. doi: https://doi.org/10.1021/cm9902220 

Kovalenko V., Kotok V. Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 12 (93). P. 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548

Kotok V., Kovalenko V. Optimization of nickel hydroxide electrode of the hybrid supercapacitor // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 6 (85). P. 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810 







Copyright (c) 2018 Vadym Kovalenko, Valerii Kotok

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061