Firmware implementation and experimental research of the phase-locked loop with improved noise immunity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.143178

Keywords:

, phase-locked loop (PLL), modified phase detector (PD), narrowband filter (NBF)

Abstract

This paper presents a method for improvement of the phase-locked loop (PLL) noise immunity by using a modified phase detector. The article shows structural diagram of the PLL with the modified phase detector and describes the criterion for choosing the parameters of the narrowband filter and the high-pass filter to prevent distortions of information signal. Simulation of both classical and modified devices was carried out to find a noise threshold, which causes phase-locked loop to unlock. Simulation results show that multiple cycle slips of synchronization in short period of time in modified PLL occur for higher levels of noise (by 1.5–4 dB depending on PLL parameters), than in classical PLL. Both devices were software implemented on FPGA (field programmable gate array) logic and experimental studies of their noise immunity were conducted. The results of experimental studies qualitatively correspond to simulation ones and show that the that noise threshold of the modified phase detector is greater up to 1–2.5 dB depending on the device parameters. Experimental research also shows that modified phase detector does not deteriorate the dynamic properties of whole device and even improves them in comparison to classical PLL.

Author Biographies

Andrii Bondariev, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of theoretical radio engineering and radio measurement

Serhii Altunin, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of theoretical radio engineering and radio measurement

Ivan Horbatyi, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of theoretical radio engineering and radio measurement

Ivan Maksymiv, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Assistant

Department of theoretical radio engineering and radio measurement

References

  1. Vesolovskiy, K.; Ledovskiy, A. I. (Ed.) (2006). Sistemy podvizhnoy radiosvyazi. Moscow, 536.
  2. Jain, R. (2014). Wireless and Mobile Networking: Facts, Statistics and Trends. Available at: https://www.cse.wustl.edu/~jain/cse574-14/ftp/j_02trn.pdf
  3. Akimov, V. N., Belyustina, L. N., Belyh, V. N. et. al.; Shahgil'dyan, V. V., Belyustina, L. N. (Eds.) (1982). Sistemy fazovoy sinhronizacii. Moscow: Radio i svyaz', 288.
  4. Proakis, J. G., Salehi, M. (2003). Communication Systems Engineering. New Jersey: McGraw-Hill Companies Inc., 801.
  5. Bondariev, A. P., Mandziy, B. A., Maksymiv, I. P. (2010). Detektuvannia bahatopozytsiynykh FM syhnaliv za nyzkoho vidnoshennia syhnal/shum. Visnyk Vinnytskoho politekhnichnoho instytutu, 4, 74–77.
  6. Bondariev, A., Maksymiv, I. (2015). Method of reducing the noise influence on phase – shift keying signals. American Journal of Circuits, Systems and Signal Processing, 1 (3), 120–124.
  7. Gorbatyy, I. V. (2014). Investigation of the technical efficiency of state-of-the-art telecommunication systems and networks with limited bandwidth and signal power. Automatic Control and Computer Sciences, 48 (1), 47–55. doi: https://doi.org/10.3103/s0146411614010039
  8. Sidorkina, Yu. A., Koval'chuk, A. A., Ryazanova, M. A. (2011). Vozdeystvie na sistemu sinhronizacii garmonicheskih pomekh i shuma. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie, 3, 3–25.
  9. Kychak, V. M., Tromsiuk, V. D. (2014). Pidvyshchennia zavadostiykosti pry pryiomi ChMn dyskretnykh syhnaliv. Vseukrainskyi mizhvidomchyi naukovo-tekhnichnyi zbirnyk "Radiotekhnika", 178, 24–30.
  10. Purkayastha, B. B., Sarma, K. K. (2015). A Digital Phase Locked Loop based Signal and Symbol Recovery System for Wireless Channel. Springer, 254. doi: https://doi.org/10.1007/978-81-322-2041-1
  11. Best, R. E. (2003). Phase-locked loops: design, simulation, and applications (professional engineering). New York: McGraw-Hill Companies Inc., 436.
  12. Kumar, M. (2012). FPGA Implementation of ADPLL with Ripple Reduction Techniques. International Journal of VLSI Design & Communication Systems, 3 (2), 99–106. doi: https://doi.org/10.5121/vlsic.2012.3209
  13. Elshazly, A., Inti, R., Young, B., Hanumolu, P. K. (2013). Clock Multiplication Techniques Using Digital Multiplying Delay-Locked Loops. IEEE Journal of Solid-State Circuits, 48 (6), 1416–1428. doi: https://doi.org/10.1109/jssc.2013.2254552
  14. Al-araji Saleh, R., Hussain, Z. M., Al-qutayri Mahmoud, A. (2006). Digital Phase Lock Loops. Springer, 191. doi: https://doi.org/10.1007/978-0-387-32864-5
  15. Sithamparanathan, K. (2008). Digital-PLL Assisted Frequency Estimation with Improved Error Variance. IEEE GLOBECOM 2008 – 2008 IEEE Global Telecommunications Conference. doi: https://doi.org/10.1109/glocom.2008.ecp.676
  16. Bondariev, A. P., Altunin, S. I. (2017). Investigation of Conditions of Synchronization Loss in Software Phase-Locked Loop. Visnyk Vinnytskoho politekhnichnoho instytutu, 2, 91–96.
  17. Polikarovskikh, O. I., Melnychuk, V. M. (2016). Analiz osnovnykh parametriv priamykh tsyfrovykh synezatoriv chastoty (DDS). Visnyk Khmelnytskoho natsionalnoho universytetu, 6, 157–163.
  18. Polikarovskykh, O. I. (2014). Fazove kolo yak osnova klasyfikatsiyi priamykh syntezatoriv chastoty. Visnyk Khmelnytskoho natsionalnoho universytetu, 5, 133–139.
  19. Bondariev, A. P., Altunin, S. I. (2017). Measurement of the phase-transfer function of the software phase-locked loop. 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). doi: https://doi.org/10.1109/ukrmico.2017.8095379
  20. Cifrovoy kontur FAPCH (digital PLL) i ego svoystva. Available at: http://www.dsplib.ru/content/dpll/dpll.html
  21. Xilinx “7 Series FPGAs Data Sheet: Overview”. Available at: https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
  22. Altunin, S. I. (2017). Analysis of the static characteristics of the software phase-locked loop. Visnyk Khmelnytskoho natsionalnoho universytetu, 1, 121–126.

Downloads

Published

2018-09-28

How to Cite

Bondariev, A., Altunin, S., Horbatyi, I., & Maksymiv, I. (2018). Firmware implementation and experimental research of the phase-locked loop with improved noise immunity. Eastern-European Journal of Enterprise Technologies, 5(9 (95), 17–25. https://doi.org/10.15587/1729-4061.2018.143178

Issue

Section

Information and controlling system