Analysis of the technology to manufacture a high-temperature microstrip superconductive device for the electromagnetic protection of receivers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.144125

Keywords:

high-temperature superconducting film, magnetron spraying, laser spraying, substrate material, contacts on superconductors

Abstract

Technological features of the process of manufacturing a high-speed high-temperature superconducting microstrip protective device which can reduce in a picosecond period (the time of switching or operation speed) the incoming power from the antenna-feeder path and the power passing through it to a level safe for sensitive semiconductor elements of the receiver (preventing current destruction of p-n junction). The study enables determination of the features and conditions for the use of modern technological methods for creating a superconducting microstrip protective device taking into account influence of the substrate material, superconductor and contacts and the method of their connection on the switching properties of superconducting films of the proposed protective device. The switching properties of superconducting films include speed of phase transition of a film from a superconducting to a nonconducting state. To determine degree of material influence on switching properties, it was proposed to use the following: lattice parameter, thermal expansion coefficient of materials, degree of interaction of molecular structures of the contacting surfaces, probability of local defects on the surface (nonconducting zones). The study outlines basic conditions (methods of film deposition, applying a certain superconducting film (YBCO) on the chosen substrate) which should be met in order to create an operable protective device. The study results make it possible to assess the degree of influence of contact materials and the method of deposition (of both film on the substrate and contacts on the film) on microstructure and switching properties of the superconducting protective device. Such results can be used in synthesis of high-temperature superconducting devices for protecting receiver elements from current destruction of their p–n junctions

Author Biographies

Oleksandr Fyk, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

PhD, Associate Professor

Department of Informatics and Applied Information Technologies

Dmytro Kucher, Institute of Naval Forces of the National University "Odessa Maritime Academy" Hradonachalnytska str., 20, Odessa, Ukraine, 65029

Doctor of Technical Sciences, Professor

Department of Armament, Communication and Automated Control Systems

Larisa Kucher, Institute of Naval Forces of the National University "Odessa Maritime Academy" Hradonachalnytska str., 20, Odessa, Ukraine, 65029

PhD

Department of Social, Humanitarian and All-Military Disciplines

Roman Gonchar, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

PhD

Scientific Research Center "Combat service activity National Guard of Ukraine "

Volodymyr Antonetsʹ, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

PhD, Associate Professor

Mykhailo Fyk, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of oil, gas and condensate extraction

References

  1. Fyk, O., Kucher, D., Gonchar, R. (2017). Experimental study of the superconducting microstrip antenna as a protective device of the receiver from electromagnetic damage. EUREKA: Physics and Engineering, 5, 73–88. doi: https://doi.org/10.21303/2461-4262.2017.00436
  2. Thin-film Coatings: Ultrathin tunable conducting oxide nanofilms create broadband, near-perfect absorbers (2018). Laser Focus World. 2018. Available at: https://www.laserfocusworld.com/articles/print/volume-54/issue-09/features/thin-film-coatings-ultrathin-tunable-conducting-oxide-nanofilms-create-broadband-near-perfect-absorbers.html
  3. Khan, N. A., Nawaz, S. (2006). Effect of Mg doping on the superconducting properties of Cu1-xTlxBa2Ca3-yMgy Cu4O12-delta. IEEE Transactions on Applied Superconductivity, 16 (1), 2–8. doi: https://doi.org/10.1109/tasc.2006.869914
  4. Muhortov, V. M., Sledkov, V. A., Muhortov, Vas. M. (2002). Vysokotemperaturnye sverhprovodniki v sovremennoy apparature svyazi (Perspektivy primeneniya i sostoyanie issledovaniy) Chast' II. Mikrosistemnaya tekhnika, 9, 11–18.
  5. Willemsen, B. A. (2001). HTS filter subsystems for wireless telecommunications. IEEE Transactions on Appiled Superconductivity, 11 (1), 60–67. doi: https://doi.org/10.1109/77.919285
  6. Kolpakov, V. O., Kaluhin, V. D., Kucher, D. B., Fyk, O. I. (2002). Vykorystannia tonkykh plivok vysokotemperaturnykh nadprovidnykiv dlia zakhystu elementiv radioelektronoi aparatury vid elektroeroziynoho ruinuvannia pry vplyvi potuzhnykh elektromahnitnykh vyprominiuvan. Systemy obrobky informatsiyi, 5 (21), 36–42.
  7. Liu, Y., Yao, Y., Chen, Y., Khatri, N. D., Liu, J., Galtsyan, E. et. al. (2013). Electromagnetic Properties of(Gd,Y)Ba2Cu3OxSuperconducting Tapes With High Levels of Zr Addition. IEEE Transactions on Applied Superconductivity, 23 (3), 6601804–6601804. doi: https://doi.org/10.1109/tasc.2012.2235903
  8. Bakar, M. A., Velichko, A. V., Lancaster, M. J., Xiong, X., Porch, A. (2003). Temperature and magnetic field effects on microwave intermodulation in YBCO films. IEEE Transactions on Appiled Superconductivity, 13 (2), 3581–3584. doi: https://doi.org/10.1109/tasc.2003.812403
  9. Mansour, R. R. (2002). Microwave superconductivity. IEEE Transactions on Microwave Theory and Techniques, 50 (3), 750–759. doi: https://doi.org/10.1109/22.989959
  10. Muhortov, Vl. M., Sledkov, V. A., Muhortov, V. M. (2002). Vysokotemperaturnye sverhprovodniki v sovremennoy apparature svyazi (Perspektivy primeneniya i sostoyanie issledovaniy). Chast' I. Mikrosistemnaya tekhnika, 8, 20–24.
  11. Porch, A., Lancaster, M. (2006). Introduction to the Special Issue of the Proceedings of the 9th Symposium on High Temperature Superconductors in High Frequency Fields. Journal of Superconductivity and Novel Magnetism, 20 (1), 1–1. doi: https://doi.org/10.1007/s10948-006-0211-6
  12. Nurgaliev, T. (2008). Numerical investigation of the surface impedance of ferromagnetic manganite thin films. Journal of Magnetism and Magnetic Materials, 320 (3-4), 304–311. doi: https://doi.org/10.1016/j.jmmm.2007.06.005
  13. Yin, E., Rubin, M., Dixon, M. (1992). Sputtered YBCO films on metal substrates. Journal of Materials Research, 7 (07), 1636–1640. doi: https://doi.org/10.1557/jmr.1992.1636
  14. Yu, H., Meng, L., Szott, M. M., McLain, J. T., Cho, T. S., Ruzic, D. N. (2013). Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering. Plasma Sources Science and Technology, 22 (4), 045012. doi: https://doi.org/10.1088/0963-0252/22/4/045012
  15. Liu, J.-X., Yang, K., Liu, L., Bu, S.-R., Luo, Z.-X. (2007). Surface character of laser assisted wet chemical etching of YBCO high temperature superconducting film. Microwave and Optical Technology Letters, 49 (11), 2672–2675. doi: https://doi.org/10.1002/mop.22809
  16. Wu, C.-J. (2003). Effective microwave surface impedance of a thin type-II superconducting film in the parallel magnetic field. Journal of Applied Physics, 93 (6), 3450–3456. doi: https://doi.org/10.1063/1.1556571
  17. Kucher, D. B. (1997). Moshchnye elektromagnitnye izlucheniya i sverhprovodyashchie zashchitnye ustroystva. Sevastopol': Ahtiar, 188.
  18. Morimoto, A., Otsubo, S., Shimizu, T., Minamikawa, T., Yonezawa, Y., Kidoh, H., Ogawa, T. (1990). Influence of Laser Irradiation and Ambient Gas in Preparation of PZT Films by Laser Ablation. MRS Proceedings, 191. doi: https://doi.org/10.1557/proc-191-31
  19. Borisov, V. M., El’tsov, A. V., Khristoforov, O. B. (2015). High-power, highly stable KrF laser with a 4-kHz pulse repetition rate. Quantum Electronics, 45 (8), 691–696. doi: https://doi.org/10.1070/qe2015v045n08abeh015658
  20. Eryu, O., Murakami, K., Masuda, K., Kasuya, A., Nishina, Y. (1989). Dynamics of laser‐ablated particles from highTcsuperconductor YBa2Cu3Oy. Applied Physics Letters, 54 (26), 2716–2718. doi: https://doi.org/10.1063/1.100674
  21. Ohya, S., Kobayashi, K., Hirabayashi, Y., Kurihara, Y., Karasawa, S. (1989). C-Axis Lattice Spacing Control of As-Grown Bi-Sr-Ca-Cu-O Thin Films by Single-Target Excimer Laser Ablation. Japanese Journal of Applied Physics, 28 (6), L978–L980. doi: https://doi.org/10.1143/jjap.28.l978
  22. Kolinsky, P. V., May, P., Harrison, M. R., Miller, P., Jedamzik, D. (1989). Substrate-temperature dependence of thin films of BiSrCaCuO deposited by the laser ablation method. Superconductor Science and Technology, 1 (6), 333–335. doi: https://doi.org/10.1088/0953-2048/1/6/013
  23. Lynds, L., Weinberger, B. R., Potrepka, D. M., Peterson, G. G., Lindsay, M. P. (1989). High temperature superconducting thin films: The physics of pulsed laser ablation. Physica C: Superconductivity, 159 (1-2), 61–69. doi: https://doi.org/10.1016/0921-4534(89)90104-4
  24. Miura, S., Yoshitake, T., Satoh, T., Miyasaka, Y., Shohata, N. (1988). Structure and superconducting properties of Y1Ba2Cu3O7−δfilms prepared by transversely excited atmospheric pressure CO2pulsed laser evaporation. Applied Physics Letters, 52 (12), 1008–1010. doi: https://doi.org/10.1063/1.99228
  25. Zheng, J. P., Ying, Q. Y., Witanachchi, S., Huang, Z. Q., Shaw, D. T., Kwok, H. S. (1989). Role of the oxygen atomic beam in low‐temperature growth of superconducting films by laser deposition. Applied Physics Letters, 54 (10), 954–956. doi: https://doi.org/10.1063/1.100777
  26. Dersch, H., Blatter, G. (1988). New critical-state model for critical currents in ceramic high-Tcsuperconductors. Physical Review B, 38 (16), 11391–11404. doi: https://doi.org/10.1103/physrevb.38.11391
  27. Schneidewind, H., Stelzner, T. (2003). Optimization of surface morphology and electrical parameters of Tl-Ba-Ca-Cu-O thin films for high frequency devices. IEEE Transactions on Appiled Superconductivity, 13 (2), 2762–2765. doi: https://doi.org/10.1109/tasc.2003.811999
  28. Danilin, B. S., Sargin, V. K. (1982). Magnetronnye raspylitel'nye sistemy. Moscow: Radio i svyaz', 98.
  29. Talvacchio, J. (1989). Electrical contact to superconductors. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 12 (1), 21–31. doi: https://doi.org/10.1109/33.19008
  30. Otsubo, S., Minamikawa, T., Yonezawa, Y., Maeda, T., Moto, A., Morimoto, A., Shimizu, T. (1988). Preparation of Ba-Y-Cu-O Superconducting Films by Laser Ablation with and without Laser Irradiation on Growing Surface. Japanese Journal of Applied Physics, 27 (12), L2442–L2444. doi: https://doi.org/10.1143/jjap.27.l2442
  31. Fujiwara, N., Onishi, T., Kishida, S. (2005). Deposition of Bi2Se2Can–1CunOy (bi-based) superconducting thin films by rf magnetron sputtering method under external magnetic field. IEEE Transactions on Appiled Superconductivity, 15 (2), 3074–3077. doi: https://doi.org/10.1109/tasc.2005.848961
  32. Thornton, J. A., Lamb, J. L. (1984). Substrate heating rates for planar and cylindrical-post magnetron sputtering sources. Thin Solid Films, 119 (1), 87–95. doi: https://doi.org/10.1016/0040-6090(84)90160-3
  33. Char, K., Matijasevic, V. (2005). HTS Film Growth. Encyclopedia of RF and Microwave Engineering. doi: https://doi.org/10.1002/0471654507.eme168
  34. Adachi, H., Hirochi, K., Setsune, K., Kitabatake, M., Wasa, K. (1987). Low‐temperature process for the preparation of highTcsuperconducting thin films. Applied Physics Letters, 51 (26), 2263–2265. doi: https://doi.org/10.1063/1.98904
  35. Moshalkova, N. A. (1990). Himicheskie aspekty vliyaniya materiala podlozhki na sverhprovodyashchie svoystva tonkih plenok. Obzory po VTSP, 1, 17–39.
  36. Kucher, D. B., Berezinec, V. M. (1993). Rezultaty eksperimentalnogo issledovaniya amplitudno-chastotnyh harakteristik i vremeni vosstanovleniya sverxprovodyashhego sostoyaniya ogranichitelya na osnove VTSP. Tematicheskiy nauchno-texnicheskiy sbornik XVU, 339, 31–34.

Downloads

Published

2018-10-10

How to Cite

Fyk, O., Kucher, D., Kucher, L., Gonchar, R., Antonetsʹ, V., Fyk, M., & Besedin, Y. (2018). Analysis of the technology to manufacture a high-temperature microstrip superconductive device for the electromagnetic protection of receivers. Eastern-European Journal of Enterprise Technologies, 5(12 (95), 38–47. https://doi.org/10.15587/1729-4061.2018.144125

Issue

Section

Materials Science