Investigation of the structure and sorption peculiarities of cobalt and uranium ions by nanocomposites based on montmorillonite and tetraethoxysilane

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.144553

Keywords:

porous structure, template-free synthesis, aluminosilicate adsorbents, structural modification, cobalt adsorption, uranium adsorption

Abstract

The structure and adsorption characteristics of silica -and montmorillonite-based nanocomposites are investigated. Tetraethoxysilane was used as a source of silica. The porous structure was investigated by the method of low-temperature nitrogen adsorption.

According to the research results, it was found that a small amount of silica in nanocomposite samples (14 % SiO2) contributes to the formation of material with a larger specific surface area and greater number of meso- and macropores compared to original montmorillonite. This, in turn, leads to a better diffusion of ions of different nature into the nanocomposite structure. An increase in the silica content (up to 57 % SiO2) allows obtaining microporous samples with a large specific surface area.

It was determined that the increase of the montmorillonite content in the investigated samples contributes to the improvement of the adsorption properties of nanocomposites in relation to the removal of cobalt(II) ions from the aqueous medium. At an optimum silica content (3–14 % SiO2), the experimental samples retain high values of maximum cobalt adsorption (14 mg/g), as well as original montmorillonite. It was also found that an increase in the silica concentration in the samples increases the efficiency of removal of uranium(VI) ions from the aqueous medium (from 12 mg/g in original montmorillonite to 25 mg/g for nanocomposites with a silica content of 57 %). This is due to, first, an increase in the specific surface area of the samples, and secondly – an increase in the number of surface hydroxyl groups, which more selectively remove uranium from solutions. Thus, selection of the chemical composition of nanocomposites based on silica gel and montmorillonite allows regulating porous structures and surface chemistry, and thus increasing the sorbent efficiency depending on the task

Author Biographies

Dmytro Doroshenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of Chemical Technology of Ceramics and Glass

Igor Pylypenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Assistant

Department of Chemical Technology of Ceramics and Glass

Iryna Kovalchuk, Institute for Sorption and Problems of Endoecology NAS of Ukraine Henerala Naumova str., 13, Kyiv, Ukraine, 03164

PhD, Senior Researcher

Department of ecological chemistry

Borys Kornilovych, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Chemical Sciences, Professor, Head of Department, Corresponding Member of NAS Ukraine

Department of Chemical Technology of Ceramics and Glass

Larysa Spasonova, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of chemical technology of ceramics and glass

References

  1. Merkel, B. J., Hasche-Berger, A. (Eds.) (2006). Uranium in the Environment: Mining Impact and Consequences. Freiberg. Taylor & Francis, 897. doi: https://doi.org/10.1007/3-540-28367-6
  2. Atwood, D. A. (2013). Radionuclides in the Environment. Chichester: John Wiley & Sons, 560.
  3. Tournassat, C., Tinnacher, R. M., Grangeon, S., Davis, J. A. (2018). Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochimica et Cosmochimica Acta, 220, 291–308. doi: https://doi.org/10.1016/j.gca.2017.09.049
  4. Hu, W., Lu, S., Song, W., Chen, T., Hayat, T., Alsaedi, N. S. et. al. (2018). Competitive adsorption of U(VI) and Co(II) on montmorillonite: A batch and spectroscopic approach. Applied Clay Science, 157, 121–129. doi: https://doi.org/10.1016/j.clay.2018.02.030
  5. Wang, Y., Zheng, Z., Zhao, Y., Huang, J., Zhang, Z., Cao, X. et. al. (2018). Adsorption of U(VI) on montmorillonite pillared with hydroxy-aluminum. Journal of Radioanalytical and Nuclear Chemistry, 317 (1), 69–80. doi: https://doi.org/10.1007/s10967-018-5913-2
  6. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239–258. doi: https://doi.org/10.1016/j.clay.2015.12.024
  7. Eliche-Quesada, D., Azevedo-Da Cunha, R., Corpas-Iglesias, F. A. (2015). Effect of sludge from oil refining industry or sludge from pomace oil extraction industry addition to clay ceramics. Applied Clay Science, 114, 202–211. doi: https://doi.org/10.1016/j.clay.2015.06.009
  8. Jaeckels, N., Tenzer, S., Meier, M., Will, F., Dietrich, H., Decker, H., Fronk, P. (2017). Influence of bentonite fining on protein composition in wine. LWT, 75, 335–343. doi: https://doi.org/10.1016/j.lwt.2016.08.062
  9. Tiruneh, A. T., Debessai, T. Y., Bwembya, G. C. et. al. (2018). Combined clay adsorption-coagulation process for the removal of some heavy metals from water and wastewater. American Journal of Environmental Engineering, 8 (2), 25–35.
  10. He, R., Wang, Z., Tan, L., Zhong, Y., Li, W., Xing, D. et. al. (2018). Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters. Microporous and Mesoporous Materials, 257, 212–221. doi: https://doi.org/10.1016/j.micromeso.2017.08.007
  11. Aguiar, J. E., Cecilia, J. A., Tavares, P. A. S., Azevedo, D. C. S., Castellón, E. R., Lucena, S. M. P., Silva, I. J. (2017). Adsorption study of reactive dyes onto porous clay heterostructures. Applied Clay Science, 135, 35–44. doi: https://doi.org/10.1016/j.clay.2016.09.001
  12. Cecilia, J. A., García-Sancho, C., Vilarrasa-García, E., Jiménez-Jiménez, J., Rodriguez-Castellón, E. (2018). Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. The Chemical Record, 18 (7-8), 1085–1104. doi: https://doi.org/10.1002/tcr.201700107
  13. Sadek, O. M., Reda, S. M., Al-Bilali, R. K. (2013). Preparation and Characterization of Silica and Clay-Silica Core-Shell Nanoparticles Using Sol-Gel Method. Advances in Nanoparticles, 02 (02), 165–175. doi: https://doi.org/10.4236/anp.2013.22025
  14. Abou Khalil, T., Ben Chaabene, S., Boujday, S., Blanchard, J., Bergaoui, L. (2015). A new method for elaborating mesoporous SiO2/montmorillonite composite materials. Journal of Sol-Gel Science and Technology, 75 (2), 436–446. doi: https://doi.org/10.1007/s10971-015-3716-2
  15. Shu, Z., Li, T., Zhou, J., Chen, Y., Yu, D., Wang, Y. (2014). Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption. Applied Clay Science, 102, 33–40. doi: https://doi.org/10.1016/j.clay.2014.10.006
  16. Li, T., Shu, Z., Zhou, J., Chen, Y., Yu, D., Yuan, X., Wang, Y. (2015). Template-free synthesis of kaolin-based mesoporous silica with improved specific surface area by a novel approach. Applied Clay Science, 107, 182–187. doi: https://doi.org/10.1016/j.clay.2015.01.022
  17. Doroshenko, D., Pylypenko, I., Kornilovych, B., Subbota, I. (2018). Preparation of porous silica nanocomposites from montmorillonite using sol-gel approach. Technology Audit and Production Reserves, 4 (3 (42)), 4–9. doi: https://doi.org/10.15587/2312-8372.2018.140355
  18. Rouquerol, J., Rouquerol, F., Llewellyn, P. et. al. (2014). Adsorption by powders and porous solids principles, methodology and applications. Elsevier, 646. doi: https://doi.org/10.1016/c2010-0-66232-8
  19. Rios, X., Moriones, P., Echeverría, J. C., Luquín, A., Laguna, M., Garrido, J. J. (2011). Characterisation of hybrid xerogels synthesised in acid media using methyltriethoxysilane (MTEOS) and tetraethoxysilane (TEOS) as precursors. Adsorption, 17 (3), 583–593. doi: https://doi.org/10.1007/s10450-011-9331-9
  20. Li, X. L., Chen, C. L., Chang, P. P., Yu, S. M., Wu, W. S., Wang, X. K. (2009). Comparative studies of cobalt sorption and desorption on bentonite, alumina and silica: effect of pH and fulvic acid. Desalination, 244 (1-3), 283–292. doi: https://doi.org/10.1016/j.desal.2008.04.045
  21. Li, S., Wang, X., Huang, Z., Du, L., Tan, Z., Fu, Y., Wang, X. (2015). Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. Journal of Radioanalytical and Nuclear Chemistry, 308 (3), 877–886. doi: https://doi.org/10.1007/s10967-015-4513-7
  22. Liu, G., Mei, H., Zhu, H., Fang, M., Alharbi, N. S., Hayat, T. et. al. (2017). Investigation of U(VI) sorption on silica aerogels: Effects of specific surface area, pH and coexistent electrolyte ions. Journal of Molecular Liquids, 246, 140–148. doi: https://doi.org/10.1016/j.molliq.2017.09.066
  23. Lamb, A. C. M., Grieser, F., Healy, T. W. (2016). The adsorption of uranium (VI) onto colloidal TiO2, SiO2 and carbon black. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 156–162. doi: https://doi.org/10.1016/j.colsurfa.2016.04.003

Downloads

Published

2018-10-16

How to Cite

Doroshenko, D., Pylypenko, I., Kovalchuk, I., Kornilovych, B., & Spasonova, L. (2018). Investigation of the structure and sorption peculiarities of cobalt and uranium ions by nanocomposites based on montmorillonite and tetraethoxysilane. Eastern-European Journal of Enterprise Technologies, 5(6 (95), 6–11. https://doi.org/10.15587/1729-4061.2018.144553

Issue

Section

Technology organic and inorganic substances