DOI: https://doi.org/10.15587/1729-4061.2018.144553

Investigation of the structure and sorption peculiarities of cobalt and uranium ions by nanocomposites based on montmorillonite and tetraethoxysilane

Dmytro Doroshenko, Igor Pylypenko, Iryna Kovalchuk, Borys Kornilovych, Larysa Spasonova

Abstract


The structure and adsorption characteristics of silica -and montmorillonite-based nanocomposites are investigated. Tetraethoxysilane was used as a source of silica. The porous structure was investigated by the method of low-temperature nitrogen adsorption.

According to the research results, it was found that a small amount of silica in nanocomposite samples (14 % SiO2) contributes to the formation of material with a larger specific surface area and greater number of meso- and macropores compared to original montmorillonite. This, in turn, leads to a better diffusion of ions of different nature into the nanocomposite structure. An increase in the silica content (up to 57 % SiO2) allows obtaining microporous samples with a large specific surface area.

It was determined that the increase of the montmorillonite content in the investigated samples contributes to the improvement of the adsorption properties of nanocomposites in relation to the removal of cobalt(II) ions from the aqueous medium. At an optimum silica content (3–14 % SiO2), the experimental samples retain high values of maximum cobalt adsorption (14 mg/g), as well as original montmorillonite. It was also found that an increase in the silica concentration in the samples increases the efficiency of removal of uranium(VI) ions from the aqueous medium (from 12 mg/g in original montmorillonite to 25 mg/g for nanocomposites with a silica content of 57 %). This is due to, first, an increase in the specific surface area of the samples, and secondly – an increase in the number of surface hydroxyl groups, which more selectively remove uranium from solutions. Thus, selection of the chemical composition of nanocomposites based on silica gel and montmorillonite allows regulating porous structures and surface chemistry, and thus increasing the sorbent efficiency depending on the task

Keywords


porous structure; template-free synthesis; aluminosilicate adsorbents; structural modification; cobalt adsorption; uranium adsorption

Full Text:

PDF

References


Merkel, B. J., Hasche-Berger, A. (Eds.) (2006). Uranium in the Environment: Mining Impact and Consequences. Freiberg. Taylor & Francis, 897. doi: https://doi.org/10.1007/3-540-28367-6

Atwood, D. A. (2013). Radionuclides in the Environment. Chichester: John Wiley & Sons, 560.

Tournassat, C., Tinnacher, R. M., Grangeon, S., Davis, J. A. (2018). Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochimica et Cosmochimica Acta, 220, 291–308. doi: https://doi.org/10.1016/j.gca.2017.09.049

Hu, W., Lu, S., Song, W., Chen, T., Hayat, T., Alsaedi, N. S. et. al. (2018). Competitive adsorption of U(VI) and Co(II) on montmorillonite: A batch and spectroscopic approach. Applied Clay Science, 157, 121–129. doi: https://doi.org/10.1016/j.clay.2018.02.030

Wang, Y., Zheng, Z., Zhao, Y., Huang, J., Zhang, Z., Cao, X. et. al. (2018). Adsorption of U(VI) on montmorillonite pillared with hydroxy-aluminum. Journal of Radioanalytical and Nuclear Chemistry, 317 (1), 69–80. doi: https://doi.org/10.1007/s10967-018-5913-2

Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239–258. doi: https://doi.org/10.1016/j.clay.2015.12.024

Eliche-Quesada, D., Azevedo-Da Cunha, R., Corpas-Iglesias, F. A. (2015). Effect of sludge from oil refining industry or sludge from pomace oil extraction industry addition to clay ceramics. Applied Clay Science, 114, 202–211. doi: https://doi.org/10.1016/j.clay.2015.06.009

Jaeckels, N., Tenzer, S., Meier, M., Will, F., Dietrich, H., Decker, H., Fronk, P. (2017). Influence of bentonite fining on protein composition in wine. LWT, 75, 335–343. doi: https://doi.org/10.1016/j.lwt.2016.08.062

Tiruneh, A. T., Debessai, T. Y., Bwembya, G. C. et. al. (2018). Combined clay adsorption-coagulation process for the removal of some heavy metals from water and wastewater. American Journal of Environmental Engineering, 8 (2), 25–35.

He, R., Wang, Z., Tan, L., Zhong, Y., Li, W., Xing, D. et. al. (2018). Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters. Microporous and Mesoporous Materials, 257, 212–221. doi: https://doi.org/10.1016/j.micromeso.2017.08.007

Aguiar, J. E., Cecilia, J. A., Tavares, P. A. S., Azevedo, D. C. S., Castellón, E. R., Lucena, S. M. P., Silva, I. J. (2017). Adsorption study of reactive dyes onto porous clay heterostructures. Applied Clay Science, 135, 35–44. doi: https://doi.org/10.1016/j.clay.2016.09.001

Cecilia, J. A., García-Sancho, C., Vilarrasa-García, E., Jiménez-Jiménez, J., Rodriguez-Castellón, E. (2018). Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. The Chemical Record, 18 (7-8), 1085–1104. doi: https://doi.org/10.1002/tcr.201700107

Sadek, O. M., Reda, S. M., Al-Bilali, R. K. (2013). Preparation and Characterization of Silica and Clay-Silica Core-Shell Nanoparticles Using Sol-Gel Method. Advances in Nanoparticles, 02 (02), 165–175. doi: https://doi.org/10.4236/anp.2013.22025

Abou Khalil, T., Ben Chaabene, S., Boujday, S., Blanchard, J., Bergaoui, L. (2015). A new method for elaborating mesoporous SiO2/montmorillonite composite materials. Journal of Sol-Gel Science and Technology, 75 (2), 436–446. doi: https://doi.org/10.1007/s10971-015-3716-2

Shu, Z., Li, T., Zhou, J., Chen, Y., Yu, D., Wang, Y. (2014). Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption. Applied Clay Science, 102, 33–40. doi: https://doi.org/10.1016/j.clay.2014.10.006

Li, T., Shu, Z., Zhou, J., Chen, Y., Yu, D., Yuan, X., Wang, Y. (2015). Template-free synthesis of kaolin-based mesoporous silica with improved specific surface area by a novel approach. Applied Clay Science, 107, 182–187. doi: https://doi.org/10.1016/j.clay.2015.01.022

Doroshenko, D., Pylypenko, I., Kornilovych, B., Subbota, I. (2018). Preparation of porous silica nanocomposites from montmorillonite using sol-gel approach. Technology Audit and Production Reserves, 4 (3 (42)), 4–9. doi: https://doi.org/10.15587/2312-8372.2018.140355

Rouquerol, J., Rouquerol, F., Llewellyn, P. et. al. (2014). Adsorption by powders and porous solids principles, methodology and applications. Elsevier, 646. doi: https://doi.org/10.1016/c2010-0-66232-8

Rios, X., Moriones, P., Echeverría, J. C., Luquín, A., Laguna, M., Garrido, J. J. (2011). Characterisation of hybrid xerogels synthesised in acid media using methyltriethoxysilane (MTEOS) and tetraethoxysilane (TEOS) as precursors. Adsorption, 17 (3), 583–593. doi: https://doi.org/10.1007/s10450-011-9331-9

Li, X. L., Chen, C. L., Chang, P. P., Yu, S. M., Wu, W. S., Wang, X. K. (2009). Comparative studies of cobalt sorption and desorption on bentonite, alumina and silica: effect of pH and fulvic acid. Desalination, 244 (1-3), 283–292. doi: https://doi.org/10.1016/j.desal.2008.04.045

Li, S., Wang, X., Huang, Z., Du, L., Tan, Z., Fu, Y., Wang, X. (2015). Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. Journal of Radioanalytical and Nuclear Chemistry, 308 (3), 877–886. doi: https://doi.org/10.1007/s10967-015-4513-7

Liu, G., Mei, H., Zhu, H., Fang, M., Alharbi, N. S., Hayat, T. et. al. (2017). Investigation of U(VI) sorption on silica aerogels: Effects of specific surface area, pH and coexistent electrolyte ions. Journal of Molecular Liquids, 246, 140–148. doi: https://doi.org/10.1016/j.molliq.2017.09.066

Lamb, A. C. M., Grieser, F., Healy, T. W. (2016). The adsorption of uranium (VI) onto colloidal TiO2, SiO2 and carbon black. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 156–162. doi: https://doi.org/10.1016/j.colsurfa.2016.04.003


GOST Style Citations


Uranium in the Environment: Mining Impact and Consequences / B. J. Merkel, A. Hasche-Berger (Eds.). Freiberg. Taylor & Francis, 2006. 897 p. doi: https://doi.org/10.1007/3-540-28367-6 

Atwood D. A. Radionuclides in the Environment. Chichester: John Wiley & Sons, 2013. 560 p.

Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential / Tournassat C., Tinnacher R. M., Grangeon S., Davis J. A. // Geochimica et Cosmochimica Acta. 2018. Vol. 220. P. 291–308. doi: https://doi.org/10.1016/j.gca.2017.09.049 

Competitive adsorption of U(VI) and Co(II) on montmorillonite: A batch and spectroscopic approach / Hu W., Lu S., Song W., Chen T., Hayat T., Alsaedi N. S. et. al. // Applied Clay Science. 2018. Vol. 157. P. 121–129. doi: https://doi.org/10.1016/j.clay.2018.02.030 

Adsorption of U(VI) on montmorillonite pillared with hydroxy-aluminum / Wang Y., Zheng Z., Zhao Y., Huang J., Zhang Z., Cao X. et. al. // Journal of Radioanalytical and Nuclear Chemistry. 2018. Vol. 317, Issue 1. P. 69–80. doi: https://doi.org/10.1007/s10967-018-5913-2 

Adsorbents based on montmorillonite for contaminant removal from water: A review / Zhu R., Chen Q., Zhou Q., Xi Y., Zhu J., He H. // Applied Clay Science. 2016. Vol. 123. P. 239–258. doi: https://doi.org/10.1016/j.clay.2015.12.024 

Eliche-Quesada D., Azevedo-Da Cunha R., Corpas-Iglesias F. A. Effect of sludge from oil refining industry or sludge from pomace oil extraction industry addition to clay ceramics // Applied Clay Science. 2015. Vol. 114. P. 202–211. doi: https://doi.org/10.1016/j.clay.2015.06.009 

Influence of bentonite fining on protein composition in wine / Jaeckels N., Tenzer S., Meier M., Will F., Dietrich H., Decker H., Fronk P. // LWT. 2017. Vol. 75. P. 335–343. doi: https://doi.org/10.1016/j.lwt.2016.08.062 

Combined clay adsorption-coagulation process for the removal of some heavy metals from water and wastewater / Tiruneh A. T., Debessai T. Y., Bwembya G. C. et. al. // American Journal of Environmental Engineering. 2018. Vol. 8, Issue 2. P. 25–35.

Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters / He R., Wang Z., Tan L., Zhong Y., Li W., Xing D. et. al. // Microporous and Mesoporous Materials. 2018. Vol. 257. P. 212–221. doi: https://doi.org/10.1016/j.micromeso.2017.08.007 

Adsorption study of reactive dyes onto porous clay heterostructures / Aguiar J. E., Cecilia J. A., Tavares P. A. S., Azevedo D. C. S., Castellón E. R., Lucena S. M. P., Silva I. J. // Applied Clay Science. 2017. Vol. 135. P. 35–44. doi: https://doi.org/10.1016/j.clay.2016.09.001 

Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review / Cecilia J. A., García-Sancho C., Vilarrasa-García E., Jiménez-Jiménez J., Rodriguez-Castellón E. // The Chemical Record. 2018. Vol. 18, Issue 7-8. P. 1085–1104. doi: https://doi.org/10.1002/tcr.201700107 

Sadek O. M., Reda S. M., Al-Bilali R. K. Preparation and Characterization of Silica and Clay-Silica Core-Shell Nanoparticles Using Sol-Gel Method // Advances in Nanoparticles. 2013. Vol. 02, Issue 02. P. 165–175. doi: https://doi.org/10.4236/anp.2013.22025 

A new method for elaborating mesoporous SiO2/montmorillonite composite materials / Abou Khalil T., Ben Chaabene S., Boujday S., Blanchard J., Bergaoui L. // Journal of Sol-Gel Science and Technology. 2015. Vol. 75, Issue 2. P. 436–446. doi: https://doi.org/10.1007/s10971-015-3716-2 

Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption / Shu Z., Li T., Zhou J., Chen Y., Yu D., Wang Y. // Applied Clay Science. 2014. Vol. 102. P. 33–40. doi: https://doi.org/10.1016/j.clay.2014.10.006 

Template-free synthesis of kaolin-based mesoporous silica with improved specific surface area by a novel approach / Li T., Shu Z., Zhou J., Chen Y., Yu D., Yuan X., Wang Y. // Applied Clay Science. 2015. Vol. 107. P. 182–187. doi: https://doi.org/10.1016/j.clay.2015.01.022 

Preparation of porous silica nanocomposites from montmorillonite using sol-gel approach / Doroshenko D., Pylypenko I., Kornilovych B., Subbota I. // Technology audit and production reserves. 2018. Vol. 4, Issue 3 (42). P. 4–9. doi: https://doi.org/10.15587/2312-8372.2018.140355 

Adsorption by powders and porous solids principles, methodology and applications / Rouquerol J., Rouquerol F., Llewellyn P. et. al. Elsevier, 2014. 646 p. doi: https://doi.org/10.1016/c2010-0-66232-8 

Characterisation of hybrid xerogels synthesised in acid media using methyltriethoxysilane (MTEOS) and tetraethoxysilane (TEOS) as precursors / Rios X., Moriones P., Echeverría J. C., Luquín A., Laguna M., Garrido J. J. // Adsorption. 2011. Vol. 17, Issue 3. P. 583–593. doi: https://doi.org/10.1007/s10450-011-9331-9 

Comparative studies of cobalt sorption and desorption on bentonite, alumina and silica: effect of pH and fulvic acid / Li X. L., Chen C. L., Chang P. P., Yu S. M., Wu W. S., Wang X. K. // Desalination. 2009. Vol. 244, Issue 1-3. P. 283–292. doi: https://doi.org/10.1016/j.desal.2008.04.045 

Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances / Li S., Wang X., Huang Z., Du L., Tan Z., Fu Y., Wang X. // Journal of Radioanalytical and Nuclear Chemistry. 2015. Vol. 308, Issue 3. P. 877–886. doi:  https://doi.org/10.1007/s10967-015-4513-7 

Investigation of U(VI) sorption on silica aerogels: Effects of specific surface area, pH and coexistent electrolyte ions / Liu G., Mei H., Zhu H., Fang M., Alharbi N. S., Hayat T. et. al. // Journal of Molecular Liquids. 2017. Vol. 246. P. 140–148. doi: https://doi.org/10.1016/j.molliq.2017.09.066 

Lamb A. C. M., Grieser F., Healy T. W. The adsorption of uranium (VI) onto colloidal TiO2, SiO2 and carbon black // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. Vol. 499. P. 156–162. doi: https://doi.org/10.1016/j.colsurfa.2016.04.003 







Copyright (c) 2018 Dmytro Doroshenko, Igor Pylypenko, Iryna Kovalchuk, Borys Kornilovych, Larysa Spasonova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061