DOI: https://doi.org/10.15587/1729-4061.2018.145223

A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films

Valerii Kotok, Vadym Kovalenko

Abstract


Thin films of nickel hydroxide were prepared using the cathodic template method and were tested in different electrolytes. The electrolytes were 0.1 M KOH and 0.1 M KOH with the addition of 0.1, 0.3 and 1 mM K2WO4. The test revealed, that the presence of tungstate can have a significant effect on electrochemical and electrochromic characteristics of Ni(OH)2 films. The initial sample, cycled in 0.1 M KOH showed different characteristics from those cycled in tungstate-containing electrolytes: significant difference between current densities of cathodic and anodic peaks and presence of the current plateau on the cyclic voltamperometry curve. However, the initial sample demonstrated the highest coloration degree of 74 %. On the other hand, the sample showed degradation of the coloration degree past initial growth.

The samples cycled in the tungstate-containing electrolyte showed better electrochemical characteristics – sharper cathodic and anodic peaks, with the lesser difference between peak values. The dynamics of the absolute coloration degree of the samples cycled in tungstate-containing electrolyte showed a constant increase. The sample tested in a solution with 1 mM tungstate had the lowest value of the absolute coloration degree – 60 %. For tungstate concentrations of 0.1 and 0.3 mM, the absolution coloration degree at the last cycle was 72 and 71 % respectively.

The samples tested in a solution with tungstate additive had a significantly lower bleaching time – 40–50 s in comparison to 360 s of the sample cycled in 0.1 М KOH.

A possible mechanism that explains such differences in behavior was proposed

Keywords


electrochromism; intercalation; Ni(OH)2; nickel hydroxide; tungstate; ; polyvinyl alcohol

Full Text:

PDF

References


Smart Windows: Energy Efficiency with a View. Available at: https://www.nrel.gov/news/features/2010/1555.html

Risteska Stojkoska, B. L., Trivodaliev, K. V. (2017). A review of Internet of Things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464. doi: https://doi.org/10.1016/j.jclepro.2016.10.006

Silverio-Fernández, M., Renukappa, S., Suresh, S. (2018). What is a smart device? – a conceptualisation within the paradigm of the internet of things. Visualization in Engineering, 6 (1). doi: https://doi.org/10.1186/s40327-018-0063-8

Sibilio, S., Rosato, A., Scorpio, M., Iuliano, G., Ciampi, G., Vanoli, G., de Rossi, F. (2016). A Review of Electrochromic Windows for Residential Applications. International Journal of Heat and Technology, 34, S481–S488. doi: https://doi.org/10.18280/ijht.34s241

Alesanco, Y., Viñuales, A., Rodriguez, J., Tena-Zaera, R. (2018). All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments. Materials, 11 (3), 414. doi: https://doi.org/10.3390/ma11030414

He, Z., Yuan, X., Zhao, Y., Zou, C., Guo, S., He, B. et. al. (2016). A greener electrochromic liquid crystal based on ionic liquid electrolytes. Liquid Crystals, 43 (8), 1110–1119. doi: https://doi.org/10.1080/02678292.2016.1160296

Cupelli, D., De Filpo, G., Chidichimo, G., Nicoletta, F. P. (2006). The electro-optical and electrochromic properties of electrolyte-liquid crystal dispersions. Journal of Applied Physics, 100 (2), 024515. doi: https://doi.org/10.1063/1.2219696

Vergaz, R., Pena, J., Barrios, D., Pérez, I., Torres, J. (2007). Electrooptical behaviour and control of a suspended particle device. Opto-Electronics Review, 15 (3), 154–158. doi: https://doi.org/10.2478/s11772-007-0013-9

Ghosh, A., Norton, B., Duffy, A. (2016). First outdoor characterisation of a PV powered suspended particle device switchable glazing. Solar Energy Materials and Solar Cells, 157, 1–9. doi: https://doi.org/10.1016/j.solmat.2016.05.013

Browne, M. P. (2016). Electrochromic Nickel Oxide Films for Smart Window Applications. International Journal of Electrochemical Science, 6636–6647. doi: https://doi.org/10.20964/2016.08.38

Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.

Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.

Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)2-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.0071712jss

Young, K.-H., Wang, L., Yan, S., Liao, X., Meng, T., Shen, H., Mays, W. (2017). Fabrications of High-Capacity Alpha-Ni(OH)2. Batteries, 3 (4), 6. doi: https://doi.org/10.3390/batteries3010006

Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390

Yuan, B., Zheng, X., Zhang, C., Lu, W., Li, B., Yang, Q.-H. (2014). Assembly of Ni(OH)2-graphene hybrids with a high electrochemical performance by a one-pot hydrothermal method. New Carbon Materials, 29 (6), 426–431. doi: https://doi.org/10.1016/s1872-5805(14)60147-5

Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839

Xi, W., Yan, G., Tan, H., Xiao, L., Cheng, S., Khan, S. U. et. al. (2018). Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting. Dalton Transactions, 47 (26), 8787–8793. doi: https://doi.org/10.1039/c8dt00765a

Huang, W., Wang, H., Zhou, J., Wang, J., Duchesne, P. N., Muir, D. et. al. (2015). Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 6 (1). doi: https://doi.org/10.1038/ncomms10035

Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371

Jittiarporn, P., Badilescu, S., Al Sawafta, M. N., Sikong, L., Truong, V.-V. (2017). Electrochromic properties of sol–gel prepared hybrid transition metal oxides – A short review. Journal of Science: Advanced Materials and Devices, 2 (3), 286–300. doi: https://doi.org/10.1016/j.jsamd.2017.08.005

Neiva, E. G. C., Oliveira, M. M., Bergamini, M. F., Marcolino, L. H., Zarbin, A. J. G. (2016). One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep33806

Lin, F., Montano, M., Tian, C., Ji, Y., Nordlund, D., Weng, T.-C. et. al. (2014). Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium. Solar Energy Materials and Solar Cells, 126, 206–212. doi: https://doi.org/10.1016/j.solmat.2013.11.023

Cai, G., Eh, A. L.-S., Ji, L., Lee, P. S. (2017). Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 1 (12), 1700074. doi: https://doi.org/10.1002/adsu.201700074

Ma, D., Wang, J. (2016). Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China Chemistry, 60 (1), 54–62. doi: https://doi.org/10.1007/s11426-016-0307-x

Martin, J., Jack, M., Hakimian, A., Vaillancourt, N., Villemure, G. (2016). Electrodeposition of Ni-Al layered double hydroxide thin films having an inversed opal structure: Application as electrochromic coatings. Journal of Electroanalytical Chemistry, 780, 217–224. doi: https://doi.org/10.1016/j.jelechem.2016.09.022

Shi, J., Lai, L., Zhang, P., Li, H., Qin, Y., Gao, Y. et. al. (2016). Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route. Journal of Solid State Chemistry, 241, 1–8. doi: https://doi.org/10.1016/j.jssc.2016.05.032

Mondal, D., Villemure, G. (2012). Improved reversibility of color changes in electrochromic Ni–Al layered double hydroxide films in presence of electroactive anions. Journal of Electroanalytical Chemistry, 687, 58–63. doi: https://doi.org/10.1016/j.jelechem.2012.09.046

Mondal, D., Villemure, G. (2009). Effect of the presence of on the electrochromic responses of films of a redox active Ni–Al-layered double hydroxide. Journal of Electroanalytical Chemistry, 628 (1-2), 67–72. doi: https://doi.org/10.1016/j.jelechem.2009.01.007

Mondal, D., Jack, M., Villemure, G. (2014). Improved contrast between the coloured and transparent states in electrochromic Ni–Al layered double hydroxide films in mixtures of electroactive ions. Journal of Electroanalytical Chemistry, 722-723, 7–14. doi: https://doi.org/10.1016/j.jelechem.2014.02.025

Kotok, V. A., Malahova, E. V., Kovalenko, V. L., Baramzin, M. N., Kovalenko, P. V.; Barsukov, V. Z., Borysenko, Yu. V., Buket, O. I., Khomenko, V. G. (Eds.) (2016). Smart windows: cation internal and anion external activation for electrochromic films of nickel hydroxide. Promising materials and processes in technical electrochemistry. Kyiv: KNUTD, 224–228.

Kotok, V., Kovalenko, V. (2018). Investigation of the electrochromic properties of Ni(OH)2 films on glass with ITO­Ni bilayer coating. Eastern-European Journal of Enterprise Technologies, 3 (5 (93)), 55–61. doi: https://doi.org/10.15587/1729-4061.2018.133387

Carpani, I. (2004). Study on the intercalation of hexacyanoferrate(II) in a Ni, Al based hydrotalcite. Solid State Ionics, 168 (1-2), 167–175. doi: https://doi.org/10.1016/j.ssi.2004.01.032

Jayashree, R. S., Vishnu Kamath, P. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239

Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699

Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813

Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814

Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465

Li, S., Zhu, K., Liu, J., Zhao, D., Cui, X. (2018). Porous LiMn2O4 Microspheres With Different Pore Size: Preparation and Application as Cathode Materials for Lithium Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 16 (1), 011006. doi: https://doi.org/10.1115/1.4040567

Lu, Y., Pang, M., Shi, S., Ye, Q., Tian, Z., Wang, T. (2018). Enhanced Electrochemical Properties of Zr4+-doped Li1.20[Mn0.52Ni0.20Co0.08]O2 Cathode Material for Lithium-ion Battery at Elevated Temperature. Scientific Reports, 8 (1). doi: https://doi.org/10.1038/s41598-018-21345-6

Lee, J. W., Ko, J. M., Kim, J.-D. (2011). Hierarchical Microspheres Based on α-Ni(OH)2 Nanosheets Intercalated with Different Anions: Synthesis, Anion Exchange, and Effect of Intercalated Anions on Electrochemical Capacitance. The Journal of Physical Chemistry C, 115 (39), 19445–19454. doi: https://doi.org/10.1021/jp206379h

Crepaldi, E. L., Pavan, P. C., Valim, J. B. (1999). A new method of intercalation by anion exchange in layered double hydroxides. Chemical Communications, 2, 155–156. doi: https://doi.org/10.1039/a808567f

Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406

Gunjakar, J. L., Inamdar, A. I., Hou, B., Cha, S., Pawar, S. M., Abu Talha, A. A. et. al. (2018). Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale, 10 (19), 8953–8961. doi: https://doi.org/10.1039/c7nr09626g


GOST Style Citations


Smart Windows: Energy Efficiency with a View. URL: https://www.nrel.gov/news/features/2010/1555.html

Risteska Stojkoska B. L., Trivodaliev K. V. A review of Internet of Things for smart home: Challenges and solutions // Journal of Cleaner Production. 2017. Vol. 140. P. 1454–1464. doi: https://doi.org/10.1016/j.jclepro.2016.10.006 

Silverio-Fernández M., Renukappa S., Suresh S. What is a smart device? – a conceptualisation within the paradigm of the internet of things // Visualization in Engineering. 2018. Vol. 6, Issue 1. doi: https://doi.org/10.1186/s40327-018-0063-8 

A Review of Electrochromic Windows for Residential Applications / Sibilio S., Rosato A., Scorpio M., Iuliano G., Ciampi G., Vanoli G., de Rossi F. // International Journal of Heat and Technology. 2016. Vol. 34. P. S481–S488. doi: https://doi.org/10.18280/ijht.34s241 

All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments / Alesanco Y., Viñuales A., Rodriguez J., Tena-Zaera R. // Materials. 2018. Vol. 11, Issue 3. P. 414. doi: https://doi.org/10.3390/ma11030414 

A greener electrochromic liquid crystal based on ionic liquid electrolytes / He Z., Yuan X., Zhao Y., Zou C., Guo S., He B. et. al. // Liquid Crystals. 2016. Vol. 43, Issue 8. P. 1110–1119. doi: https://doi.org/10.1080/02678292.2016.1160296 

The electro-optical and electrochromic properties of electrolyte-liquid crystal dispersions / Cupelli D., De Filpo G., Chidichimo G., Nicoletta F. P. // Journal of Applied Physics. 2006. Vol. 100, Issue 2. P. 024515. doi: https://doi.org/10.1063/1.2219696 

Electrooptical behaviour and control of a suspended particle device / Vergaz R., Pena J., Barrios D., Pérez I., Torres J. // Opto-Electronics Review. 2007. Vol. 15, Issue 3. P. 154–158. doi: https://doi.org/10.2478/s11772-007-0013-9 

Ghosh A., Norton B., Duffy A. First outdoor characterisation of a PV powered suspended particle device switchable glazing // Solar Energy Materials and Solar Cells. 2016. Vol. 157. P. 1–9. doi: https://doi.org/10.1016/j.solmat.2016.05.013 

Browne M. P. Electrochromic Nickel Oxide Films for Smart Window Applications // International Journal of Electrochemical Science. 2016. P. 6636–6647. doi: https://doi.org/10.20964/2016.08.38 

Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis / Kotok V. A., Kovalenko V. L., Solovov V. A., Kovalenko P. V., Ananchenko B. A. // ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, Issue 9. P. 3076–3086.

Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis / Kotok V. A., Kovalenko V. L., Kovalenko P. V., Solovov V. A., Deabate S., Mehdi A. et. al. // ARPN Journal of Engineering and Applied Sciences. 2017. Vol. 12, Issue 13. P. 3962–3977.

Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)2-Based Electrochromic Devices / Kotok V. A., Malyshev V. V., Solovov V. A., Kovalenko V. L. // ECS Journal of Solid State Science and Technology. 2017. Vol. 6, Issue 12. P. P772–P777. doi: https://doi.org/10.1149/2.0071712jss 

Fabrications of High-Capacity Alpha-Ni(OH)2 / Young K.-H., Wang L., Yan S., Liao X., Meng T., Shen H., Mays W. // Batteries. 2017. Vol. 3, Issue 4. P. 6. doi: https://doi.org/10.3390/batteries3010006 

Kovalenko V., Kotok V. Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 6 (89). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390 

Assembly of Ni(OH)2-graphene hybrids with a high electrochemical performance by a one-pot hydrothermal method / Yuan B., Zheng X., Zhang C., Lu W., Li B., Yang Q.-H. // New Carbon Materials. 2014. Vol. 29, Issue 6. P. 426–431. doi: https://doi.org/10.1016/s1872-5805(14)60147-5 

Kotok V., Kovalenko V. The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 12 (88). P. 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839 

Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting / Xi W., Yan G., Tan H., Xiao L., Cheng S., Khan S. U. et. al. // Dalton Transactions. 2018. Vol. 47, Issue 26. P. 8787–8793. doi: https://doi.org/10.1039/c8dt00765a 

Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–grapheme / Huang W., Wang H., Zhou J., Wang J., Duchesne P. N., Muir D. et. al. // Nature Communications. 2015. Vol. 6, Issue 1. doi: https://doi.org/10.1038/ncomms10035 

Kotok V., Kovalenko V. The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 11 (86). P. 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371 

Electrochromic properties of sol–gel prepared hybrid transition metal oxides – A short review / Jittiarporn P., Badilescu S., Al Sawafta M. N., Sikong L., Truong V.-V. // Journal of Science: Advanced Materials and Devices. 2017. Vol. 2, Issue 3. P. 286–300. doi: https://doi.org/10.1016/j.jsamd.2017.08.005 

One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors / Neiva E. G. C., Oliveira M. M., Bergamini M. F., Marcolino L. H., Zarbin A. J. G. // Scientific Reports. 2016. Vol. 6, Issue 1. doi: https://doi.org/10.1038/srep33806 

Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium / Lin F., Montano M., Tian C., Ji Y., Nordlund D., Weng T.-C. et. al. // Solar Energy Materials and Solar Cells. 2014. Vol. 126. P. 206–212. doi: https://doi.org/10.1016/j.solmat.2013.11.023 

Recent Advances in Electrochromic Smart Fenestration / Cai G., Eh A. L.-S., Ji L., Lee P. S. // Advanced Sustainable Systems. 2017. Vol. 1, Issue 12. P. 1700074. doi: https://doi.org/10.1002/adsu.201700074 

Ma D., Wang J. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures // Science China Chemistry. 2016. Vol. 60, Issue 1. P. 54–62. doi: https://doi.org/10.1007/s11426-016-0307-x 

Electrodeposition of Ni-Al layered double hydroxide thin films having an inversed opal structure: Application as electrochromic coatings / Martin J., Jack M., Hakimian A., Vaillancourt N., Villemure G. // Journal of Electroanalytical Chemistry. 2016. Vol. 780. P. 217–224. doi: https://doi.org/10.1016/j.jelechem.2016.09.022 

Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route / Shi J., Lai L., Zhang P., Li H., Qin Y., Gao Y. et. al. // Journal of Solid State Chemistry. 2016. Vol. 214. P. 1–8. doi: https://doi.org/10.1016/j.jssc.2016.05.032 

Mondal D., Villemure G. Improved reversibility of color changes in electrochromic Ni–Al layered double hydroxide films in presence of electroactive anions // Journal of Electroanalytical Chemistry. 2012. Vol. 687. P. 58–63. doi: https://doi.org/10.1016/j.jelechem.2012.09.046 

Mondal D., Villemure G. Effect of the presence of on the electrochromic responses of films of a redox active Ni–Al-layered double hydroxide // Journal of Electroanalytical Chemistry. 2009. Vol. 628, Issue 1-2. P. 67–72. doi: https://doi.org/10.1016/j.jelechem.2009.01.007 

Mondal D., Jack M., Villemure G. Improved contrast between the coloured and transparent states in electrochromic Ni–Al layered double hydroxide films in mixtures of electroactive ions // Journal of Electroanalytical Chemistry. 2014. Vol. 722-723. P. 7–14. doi: https://doi.org/10.1016/j.jelechem.2014.02.025 

Smart windows: cation internal and anion external activation for electrochromic films of nickel hydroxide / Kotok V. A., Malahova E. V., Kovalenko V. L., Baramzin M. N., Kovalenko P. V.; V. Z. Barsukov, Yu. V. Borysenko, O. I. Buket, V. G. Khomenko (Eds.) // Promising materials and processes in technical electrochemistry. Kyiv: KNUTD, 2016. P. 224–228.

Kotok V., Kovalenko V. Investigation of the electrochromic properties of Ni(OH)2 films on glass with ITO­Ni bilayer coating // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 5 (93). P. 55–61. doi: https://doi.org/10.15587/1729-4061.2018.133387 

Carpani I. Study on the intercalation of hexacyanoferrate(II) in a Ni, Al based hydrotalcite // Solid State Ionics. 2004. Vol. 168, Issue 1-2. P. 167–175. doi: https://doi.org/10.1016/j.ssi.2004.01.032 

Jayashree R. S., Vishnu Kamath P. Factors governing the electrochemical synthesis of α-nickel (II) hydroxide // Journal of Applied Electrochemistry. 1999. Vol. 29, Issue 4. P. 449–454. doi: https://doi.org/10.1023/a:1003493711239 

Kovalenko V., Kotok V. Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 6 (86). P. 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699 

Kovalenko V., Kotok V. Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 6 (88). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813 

Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment / Kovalenko V., Kotok V., Yeroshkina A., Zaychuk A. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 12 (89). P. 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814 

38       Kotok V., Kovalenko V., Vlasov S. Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 6 (93). P. 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465 

Porous LiMn2O4 Microspheres With Different Pore Size: Preparation and Application as Cathode Materials for Lithium Ion Batteries / Li S., Zhu K., Liu J., Zhao D., Cui X. // Journal of Electrochemical Energy Conversion and Storage. 2018. Vol. 16, Issue 1. P. 011006. doi: https://doi.org/10.1115/1.4040567 

Enhanced Electrochemical Properties of Zr4+-doped Li1.20[Mn0.52Ni0.20Co0.08]O2 Cathode Material for Lithium-ion Battery at Elevated Temperature / Lu Y., Pang M., Shi S., Ye Q., Tian Z., Wang T. // Scientific Reports. 2018. Vol. 8, Issue 1. doi: https://doi.org/10.1038/s41598-018-21345-6 

Lee J. W., Ko J. M., Kim J.-D. Hierarchical Microspheres Based on α-Ni(OH)2 Nanosheets Intercalated with Different Anions: Synthesis, Anion Exchange, and Effect of Intercalated Anions on Electrochemical Capacitance // The Journal of Physical Chemistry C. 2011. Vol. 115, Issue 39. P. 19445–19454. doi: https://doi.org/10.1021/jp206379h 

Crepaldi E. L., Pavan P. C., Valim J. B. A new method of intercalation by anion exchange in layered double hydroxides // Chemical Communications. 1999. Issue 2. P. 155–156. doi: https://doi.org/10.1039/a808567f 

Кovalenko V., Kotok V., Bolotin O. Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 6 (83). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2016.79406 

Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode / Gunjakar J. L., Inamdar A. I., Hou B., Cha S., Pawar S. M., Abu Talha A. A. et. al. // Nanoscale. 2018. Vol. 10, Issue 19. P. 8953–8961. doi: https://doi.org/10.1039/c7nr09626g 







Copyright (c) 2018 Valerii Kotok, Vadym Kovalenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061